1. 与简单线性回归区别(simple linear regression)
多个自变量(x)
2. 多元回归模型
y=β0+β1x1+β2x2+ ... +βpxp+ε
其中:β0,β1,β2... βp是参数
ε是误差值
3. 多元回归方程
E(y)=β0+β1x1+β2x2+ ... +βpxp
4. 估计多元回归方程:
y_hat=b0+b1x1+b2x2+ ... +bpxp
一个样本被用来计算β
0,β
1,β
2... β
p的点估计b
0, b
1, b
2,..., b
p
5. 估计流程 (与简单线性回归类似)