Squares
Time Limit: 3500MS | Memory Limit: 65536K | |
Total Submissions: 19307 | Accepted: 7461 |
Description
A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-degree angles. It is also a polygon such that rotating about its centre by 90 degrees gives the same polygon. It is not the only polygon with the latter property, however,
as a regular octagon also has this property.
So we all know what a square looks like, but can we find all possible squares that can be formed from a set of stars in a night sky? To make the problem easier, we will assume that the night sky is a 2-dimensional plane, and each star is specified by its x and y coordinates.
So we all know what a square looks like, but can we find all possible squares that can be formed from a set of stars in a night sky? To make the problem easier, we will assume that the night sky is a 2-dimensional plane, and each star is specified by its x and y coordinates.
Input
The input consists of a number of test cases. Each test case starts with the integer n (1 <= n <= 1000) indicating the number of points to follow. Each of the next n lines specify the x and y coordinates (two integers) of each point. You may assume that the
points are distinct and the magnitudes of the coordinates are less than 20000. The input is terminated when n = 0.
Output
For each test case, print on a line the number of squares one can form from the given stars.
Sample Input
4 1 0 0 1 1 1 0 0 9 0 0 1 0 2 0 0 2 1 2 2 2 0 1 1 1 2 1 4 -2 5 3 7 0 0 5 2 0
Sample Output
1 6 1
Source
#include <iostream>
#include<cstring>
using namespace std;
const int prime=1999;
struct node
{int x,y;
};
typedef class HashTable
{
public:
int x,y;//标记key值对应的x,y
HashTable *next; //当出现地址冲突时,开放寻址
HashTable()//Initial
{next=0;}
}Hashtable;
node pos[1001];
Hashtable* hash[prime];//hash[]是指针数组,存放地址
void insert_vist(int k)
{
int key=((pos[k].x*pos[k].x)+(pos[k].y*pos[k].y))%prime+1;//+1是避免==0
if(!hash[key]) //使key从[0~1998]后移到[1~1999]
{
Hashtable*temp=new Hashtable;
temp->x=pos[k].x;
temp->y=pos[k].y;
hash[key]=temp;
}
else//hash[key]已存地址,地址冲突
{
Hashtable *temp=hash[key];
while(temp->next)//开放寻址,直至next为空
{
temp=temp->next;
}
temp->next=new HashTable;//申请新结点,用next指向,记录x、y
temp->next->x=pos[k].x;
temp->next->y=pos[k].y;
}
return ;
}
bool Find(int x,int y)
{
int key=((x*x)+y*y)%prime+1;
if(!hash[key])//key对应的地址不存在
return false;
else
{
Hashtable *temp=hash[key];
while(temp)
{
if(temp->x==x&&temp->y==y)
return true;
temp=temp->next;
}
}
return false;
}
int main()
{
int n;
while(cin>>n)
{
if(n==0)
break;
memset(hash,0,sizeof(hash));//0 <-> NULL
for(int k=1;k<=n;k++)
{
cin>>pos[k].x>>pos[k].y;
insert_vist(k);//插入哈希表,标记散点
}
int num=0;//正方形的个数
for(int i=1;i<=n-1;i++)
for(int j=i+1;j<=n;j++)
{
int a=pos[j].x-pos[i].x;
int b=pos[j].y-pos[i].y;
int x3=pos[i].x+b;
int y3=pos[i].y-a;
int x4=pos[j].x+b;
int y4=pos[j].y-a;
if(Find(x3,y3)&&Find(x4,y4))
num++;
x3=pos[i].x-b;
y3=pos[i].y+a;
x4=pos[j].x-b;
y4=pos[j].y+a;
if(Find(x3,y3)&&Find(x4,y4))
num++;
}
cout<<num/4<<endl;//同一个正方形枚举了4次
}
return 0;
}
#include <cstdio>
#include <cstring>
#include<iostream>
#include <cmath>
#include <vector>
#include<algorithm>
using namespace std ;
#define eqs 1e-9
struct node{
double x , y ;
}p[1100] ;
bool cmp(node a,node b)
{
return ( a.x < b.x || ( a.x == b.x && a.y < b.y ) ) ;
}
bool judge(double x,double y,int n)
{
int low = 0 , mid , high = n-1 ;
while( low <= high )
{
mid = (low + high) / 2 ;
if( fabs(p[mid].x-x) < eqs && fabs(p[mid].y-y) < eqs )
return true ;
else if( p[mid].x-x > eqs || ( fabs(p[mid].x-x) < eqs && p[mid].y-y > eqs ) )
high = mid - 1 ;
else
low = mid + 1 ;
}
return false ;
}
int main()
{
int n , i , j , num ;
double x , y , xx , yy ;
while( scanf("%d", &n) && n )
{
num = 0 ;
for(i = 0 ; i < n ; i++)
{
scanf("%lf %lf", &p[i].x, &p[i].y) ;
}
sort(p,p+n,cmp) ;
for(i = 0 ; i < n ; i++)
{
for(j = i+1 ; j < n ; j++)
{
if( i == j ) continue ;
x = (p[i].x+p[j].x)/2 ;
y = (p[i].y+p[j].y)/2 ;
xx = p[i].x - x ;
yy = p[i].y - y ;
if( judge(x+yy,y-xx,n) && judge(x-yy,y+xx,n) )
{
//printf("(%.1lf,%.1lf) (%.1lf,%.1lf) (%.1lf,%.1lf) (%.1lf,%.1lf)\n", p[i].x, p[i].y , p[j].x, p[j].y,x+yy,y-xx,x-yy,y+xx ) ;
num++ ;
}
}
}
printf("%d\n", num/2) ;
}
return 0;
}