走迷宫

题目描述

一个由n * m 个格子组成的迷宫,起点是(1, 1), 终点是(n, m),每次可以向上下左右四个方向任意走一步,并且有些格子是不能走动,求从起点到终点经过每个格子至多一次的走法数。

输入

       第一行一个整数T 表示有T 组测试数据。(T <= 110)

对于每组测试数据:

第一行两个整数n, m,表示迷宫有n * m 个格子。(1 <= n, m <= 6, (n, m) !=(1, 1) ) 接下来n 行,每行m 个数。其中第i 行第j 个数是0 表示第i 行第j 个格子可以走,否则是1 表示这个格子不能走,输入保证起点和终点都是都是可以走的。

任意两组测试数据间用一个空行分开。

输出

 对于每组测试数据,输出一个整数R,表示有R 种走法。

示例输入

3
2 2
0 1
0 0
2 2
0 1
1 0
2 3
0 0 0
0 0 0

示例输出

1
0
4


#include<iostream>
#include<cstdio>
#include <cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
int mp[7][7],vis[7][7];
int sum,m,n;
void Dfs(int x,int y)////找能走到x,y的通路;
{
    if(x<1||x>n||y<1||y>m||mp[x][y]==1)
        return;//递归结束的条件;
    if(x==n&&y==m)
    {
        sum++;//找到一条通路;
        return;
    }
    if(vis[x][y]==0)
    {
        vis[x][y]=1;//走不通;
        Dfs(x+1,y);
        Dfs(x,y+1);
        Dfs(x-1,y);
        Dfs(x,y-1);//访遍四周;
        vis[x][y]=0;
    }
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        sum=0;
        memset(vis,0,sizeof(vis));//对数组vis的初始化都为0;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            scanf("%d",&mp[i][j]);
        }
        Dfs(1,1);//找能走到最后的通路;
        printf("%d\n",sum);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值