金融工程和计算的百度百科。。。。

《金融工程与计算》一书全面探讨金融工程背后的理论与数学,强调了金融工程在当今资本市场中的实际应用计算。从金融基本概念出发,逐步构建理论,涵盖了债券、期权、期货等金融工具的定价、风险管理和证券组合管理的算法,并提供定价、风险评估及项目组合管理的算法和理论。本书适合金融MBA、理工科学生、计算金融研究者、系统分析师和金融工程师参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


《金融工程和计算:原理数学算法(影印版)》全面讨论了金融工程背后的理论和数学,并强调了在当今资本市场中金融工程实际应用的计算。[1] 
书    名 金融工程和计算[1]  又    名 金融工程和计算--原理·数学·算法[2]  作    者 Yuh-Dauh Lyuu /吕育道[1]  ISBN 9787040239805[1]  页    数 627[1]  定    价 85.00[1]  出版社高等教育出版社 出版时间 2008-05[1]  开    本 16[2] 
目录
1 作者简介
2 内容简介
3 特色及评价
4 目录
作者简介编辑
吕育道(Yuh—Dauh Lyuu)教授在哈佛大学获得计算机科学专业的博土学位。他过去的职位包括贝尔实验室的技术人员、NEC研究所(普林斯顿)的研究员以及花旗证券(纽约)的助理副总裁。他现是台湾大学的计算机科学与信息工程学教授和金融学教授。他的前一本著作是《信息散布和并行计算》(Information Dispersal and Parallel Computation)。 吕教授在计算机科学和金融两方面都出版过著作,他也持有美国专利,并曾因指导优秀研究生论文多次获奖。[2] 
内容简介编辑
《金融工程和计算:原理数学算法(影印版)》全面讨论了金融工程背后的理论和数学,并强调了在当今资本市场中金融工程实际应用的计算。与大多数有关投资学、金融工程或衍生证券的书不同的是,《金融工程和计算:原理数学算法(影印版)》从金融学的基本观念出发,逐步构建理论。在现代金融学中所需要的高级数学概念以一种可接受的层次来阐释。这样,它就为金融方面的MBA、有志于从事金融业的理工科学生、计算金融的研究工作者、系统分析师和金融工程师在这一主题上提供了全面的基础。
构建理论的同时,作者介绍了在定价、风险管理和证券组合管理方面的计算技巧的算法,并且对它们的效率进行了分析。对金融证券和衍生证券的定价是《金融工程和计算:原理数学算法(影印版)》的中心论题。各种各样的金融工具都得到讨论:债券、期权、期货、远期、利率衍生品、有抵押支持的证券、嵌入期权的债券,以及诸如此类的其他工具。为便于参考使用,每种金融工具都以简短而自成体系的一章来论述。[1] 
特色及评价编辑
本书由剑桥大学出版社出版,原书名为:Financial Engineering and Computation: Principles, Mathematics, and Algorithms,是一本非常优秀的有关金融计算的图书。
  如今打算在金融领域工作的学生和专家不仅要掌握先进的概念和数学模型,还要学会如何在计算上实现这些模型。本书内容广泛,不仅介绍了金融工程背后的理论和数学,并把重点放在了计算上,以便和金融工程在今天资本市场的实际运作保持一致。本书不同于大多数的有关投资、金融工程或者衍生证券方面的书,而是从金融的基本想法开始,逐步建立理论。作者提供了很多定价、风险评估以及项目组合管理的算法和理论。本书的重点是有关金融产品和衍生证券、期权、期货、远期、利率衍生产品、抵押证券等等的定价问题。每个工具都有简要的介绍,每章都可以独立被引用。本书的算法均使用Java算法编程实现的,并可以在相关的网站上下载。
  本书可供金融MBA、金融学和金融工程方向的学生、计算金融的研究人员以及金融分析师参考使用。[2] 
目录编辑
Preface
  Useful Abbreviations
  1 Introduction
  1.1 Modern Finance: A Brief History
  1.2 Financial Engineering and Computation
  1.3 Financial Markets
  1.4 Computer Technology
  2 Analysis of Algorithms
  2.1 Complexity
  2.2 Analysis of Algorithms
  2.3 Description of Algorithms
  2.4 Software Implementation
  3 Basic Financial Mathematics
  3.1 Time Value of Money
  3.2 Annuities
  3.3 Amortization
  3.4 Yields
  3.5 Bonds
  4 Bond Price Volatility
  4.1 Price Volatility
  4.2 Duration
  4.3 Convexity
  5 Term Structure of Interest Rates
  5.1 Introduction
  5.2 Spot Rates
  5.3 Extracting Spot Rates from Yield Curves
  5.4 Static Spread
  5.5 Spot Rate Curve and Yield Curve
  5.6 Forward Rates
  5.7 Term Structure Theories
  5.8 Duration and Immunization Revisited
  6 Fundamental Statistical Concepts
  6.1 Basics
  6.2 Regression
  6.3 Correlation
  6.4 Parameter Estimation
  7 Option Basics
  7.1 Introduction
  7.2 Basics
  7.3 Exchange-Traded Options
  7.4 Basic Option Strategies
  8 Arbitrage in Option Pricing
  8.1 The Arbitrage Argument
  8.2 Relative Option Prices
  8.3 Put-Call Parity and Its Consequences
  8.4 Early Exercise of American Options
  8.5 Convexity of Option Prices
  8.6 The Option Portfolio Property
  9 Option Pricing Models
  9.1 Introduction
  9.2 The Binomial Option Pricing Model
  9.3 The Black-Scholes Formula
  9.4 Using the Black-Scholes Formula
  9.5 American Puts on a Non-Dividend-Paying Stock
  9.6 Options on a Stock that Pays Dividends
  9.7 Traversing the Tree Diagonally
  10 Sensitivity Analysis of Options
  10.1 Sensitivity Measures ("The Greeks")
  10.2 Numerical Techniques
  11 Extensions of Options Theory
  11.1 Corporate Securities
  11.2 Barrier Options
  11.3 Interest Rate Caps and Floors
  11.4 Stock Index Options
  11.5 Foreign Exchange Options
  11.6 Compound Options
  11.7 Path-Dependent Derivatives
  12 Forwards, Futures, Futures Options, Swaps
  12.1 Introduction
  12.2 Forward Contracts
  12.3 Futures Contracts
  12.4 Futures Options and Forward Options
  12.5 Swaps
  13 Stochastic Processes and Brownian Motion
  13.1 Stochastic Processes
  13.2 Martingales ("Fair Games")
  13.3 Brownian Motion
  13,4 Brownian Bridge
  14 Continuous-Time Financial Mathematics
  14.1 Stochastic Integrals
  14.2 Ito Processes
  14.3 Applications
  14.4 Financial Applications
  15 Continuous-Time Derivatives Pricing
  15.1 Partial Differential Equations
  15.2 The Black-Schotes Differential Equation
  15.3 Applications
  15.4 General Derivatives Pricing
  15.5 Stochastic Volatility
  16 Hedging
  16.1 Introduction
  16.2 Hedging and Futures
  16.3 Hedging and Options
  17 Trees
  17.1 Pricing Barrier Options with Combinatorial Methods
  17.2 Trinomial Tree Algorithms
  17.3 Pricing Multivariate Contingent Claims
  18 Numerical Methods
  18.1 Finite-Difference Methods
  18.2 Monte Carlo Simulation
  18.3 Quasi-Monte Carlo Methods
  19 Matrix Computation
  19.1 Fundamental Definitions and Results
  19.2 Least-Squares Problems
  19.3 Curve Fitting with Splines
  20 Time Series Analysis
  20.1 Introduction
  20.2 Conditional Variance Models for Price Volatility
  21 Interest Rate Derivative Securities
  21.1 Interest Rate Futures and Forwards
  21.2 Fixed-Income Options and Interest Rate Options
  21.3 Options on Interest Rate Futures
  21.4 Interest Rate Swaps
  22 Term Structure Fitting
  22.1 Introduction
  22.2 Linear Interpolation
  22.3 Ordinary Least Squares
  22.4 Splines
  22.5 The Nelson-Siegel Scheme
  23 Introduction to Term Structure Modeling
  23.1 Introduction
  23.2 The Binomial Interest Rate Tree
  23.3 Applications in Pricing and Hedging
  23.4 Volatility Term Structures
  24 Foundations of Term Structure Modeling
  24.1 Terminology
  24.2 Basic Relations
  24.3 Risk-Neutral Pricing
  24.4 The Term Structure Equation
  24.5 Forward-Rate Process
  24.6 The Binomial Model with Applications
  24.7 Black-Scholes Models
  25 Equilibrium Term Structure Models
  25.1 The Vasicek Model
  25.2 The Cox-Ingersoll-Ross Model
  25.3 Miscellaneous Models
  25.4 Model Calibration
  25.5 One-Factor Short Rate Models
  26 No-Arbitrage Term Structure Models
  26.1 Introduction
  26.2 The Ho-Lee Model
  26.3 The Black-Derman-Toy Model
  26.4 The Models According to Hull and White
  26.5 The Heath-Jarrow-Morton Model
  26.6 The Ritchken-Sankarasubramanian Model
  27 Fixed-Income Securities
  27.1 Introduction
  27.2 Treasury, Agency, and Municipal Bonds
  27.3 Corporate Bonds
  27.4 Valuation Methodologies
  27.5 Key Rate Durations
  28 Introduction to Mortgage-Backed Securities
  28.1 Introduction
  28.2 Mortgage Banking
  28.3 Agencies and Securitization
  28.4 Mortgage-Backed Securities
  28.5 Federal Agency Mortgage-Backed Securities Programs
  28.6 Prepayments
  29 Analysis of Mortgage-Backed Securities
  29.1 Cash Flow Analysis
  29.2 Collateral Prepayment Modeling
  29.3 Duration and Convexity
  29.4 Valuation Methodologies
  30 Collateralized Mortgage Obligations
  30.1 Introduction
  30.2 Floating-Rate Tranches
  30.3 PAC Bonds
  30.4 TAC Bonds
  30.5 CMO Strips
  30.6 Residuals
  31 Modern Portfolio Theory
  31.1 Mean-Variance Analysis of Risk and Return
  31.2 The Capital Asset Pricing Model
  31.3 Factor Models
  31.4 Value at Risk
  32 Software
  32.1 Web Programming
  32.2 Use of The Capitals Software
  32.3 Further Topics
  33 Answers to Selected Exercises
  Bibliography
  Glossary of Useful Notations
  Index[2] 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值