darknet源码学习:结构体network定义

本文详细解析了深度学习网络的结构定义,包括网络参数、学习策略、输入输出配置及优化算法等关键信息,为理解复杂神经网络提供基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

network结构定义:

// network.h
typedef struct network {
    int n;
    int batch;
    uint64_t *seen;
    int *t;
    float epoch;
    int subdivisions;
    layer *layers;
    float *output;
    learning_rate_policy policy;

    float learning_rate;
    float learning_rate_min;
    float learning_rate_max;
    int batches_per_cycle;
    int batches_cycle_mult;
    float momentum;
    float decay;
    float gamma;
    float scale;
    float power;
    int time_steps;
    int step;
    int max_batches;
    int num_boxes;
    int train_images_num;
    float *seq_scales;
    float *scales;
    int   *steps;
    int num_steps;
    int burn_in;
    int cudnn_half;

    int adam;
    float B1;
    float B2;
    float eps;

    int inputs;
    int outputs;
    int truths;
    int notruth;
    int h, w, c;
    int max_crop;
    int min_crop;
    float max_ratio;
    float min_ratio;
    int center;
    int flip; // horizontal flip 50% probability augmentaiont for classifier training (default = 1)
    int blur;
    int mixup;
    int letter_box;
    float angle;
    float aspect;
    float exposure;
    float saturation;
    float hue;
    int random;
    int track;
    int augment_speed;
    int sequential_subdivisions;
    int init_sequential_subdivisions;
    int current_subdivision;
    int try_fix_nan;

    int gpu_index;
    tree *hierarchy;

    float *input;
    float *truth;
    float *delta;
    float *workspace;
    int train;
    int index;
    float *cost;
    float clip;

#ifdef GPU
    //float *input_gpu;
    //float *truth_gpu;
    float *delta_gpu;
    float *output_gpu;

    float *input_state_gpu;
    float *input_pinned_cpu;
    int input_pinned_cpu_flag;

    float **input_gpu;
    float **truth_gpu;
    float **input16_gpu;
    float **output16_gpu;
    size_t *max_input16_size;
    size_t *max_output16_size;
    int wait_stream;
#endif
} network;

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

haimianjie2012

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值