NVIDIA 不同显卡对应的GPU计算能力

本文详细介绍了从Fermi到Turing的CUDA架构发展,包括各代GPU的SM版本和compute能力,如Kepler、Maxwell、Pascal、Volta及Turing等,涵盖了从CUDA3.2至CUDA10的GPU特性与编程支持。
部署运行你感兴趣的模型镜像

转自:https://blog.youkuaiyun.com/dlhlsc/article/details/85088280

Fermi (CUDA 3.2 until CUDA 8) (deprecated from CUDA 9):
SM20 or SM_20, compute_30 – Older cards such as GeForce 400, 500, 600, GT-630
Kepler (CUDA 5 and later):
SM30 or SM_30, compute_30 – Kepler architecture (generic – Tesla K40/K80, GeForce 700, GT-730)
Adds support for unified memory programming
SM35 or SM_35, compute_35 – More specific Tesla K40
Adds support for dynamic parallelism. Shows no real benefit over SM30 in my experience.
SM37 or SM_37, compute_37 – More specific Tesla K80
Adds a few more registers. Shows no real benefit over SM30 in my experience
Maxwell (CUDA 6 and later):
SM50 or SM_50, compute_50 – Tesla/Quadro M series
SM52 or SM_52, compute_52 – Quadro M6000 , GeForce 900, GTX-970, GTX-980, GTX Titan X
SM53 or SM_53, compute_53 – Tegra (Jetson) TX1 / Tegra X1
Pascal (CUDA 8 and later)
SM60 or SM_60, compute_60 – GP100/Tesla P100 – DGX-1 (Generic Pascal)
SM61 or SM_61, compute_61 – GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4, Discrete GPU on the NVIDIA Drive PX2
SM62 or SM_62, compute_62 – Integrated GPU on the NVIDIA Drive PX2, Tegra (Jetson) TX2
Volta (CUDA 9 and later)
SM70 or SM_70, compute_70 – Tesla V100, GTX 1180 (GV104)
SM71 or SM_71, compute_71 – probably not implemented
SM72 or SM_72, compute_72 – currently unknown
Turing (CUDA 10 and later)
SM75 or SM_75, compute_75 – RTX 2080, Titan RTX, Quadro R8000
--------------------- 
 

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值