小样本分割综述

本文探讨深度卷积神经网络在图像理解和小样本学习中的挑战。重点介绍了元学习在小样本分割任务中的作用,旨在通过少数训练样本构建能够泛化的模型。文章还概述了元学习的不同方法,并讨论了小样本学习的模型基础、度量学习和优化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自:https://zhuanlan.zhihu.com/p/142899098

声明一下,这篇文章是参考了其他的博客和论文写的,属于半原创

1.介绍

深度卷积神经网络在图像分类、目标检测、语义分割等许多视觉理解任务上都取得了重大突破。一个关键的原因是大规模数据集的可用性,比如ImageNet,这些数据集支持对深度模型的培训。然而,数据标记是昂贵的,特别是对于密集的预测任务,如语义分割和实例分割。此外,在对模型进行训练之后,很难将模型应用于新类的预测。与机器学习算法不同的是,人类只看到几个例子就能很容易地从图像中分割出一个新概念。人类和机器学习算法之间的差距激发了对小样本学习的研究,其目的是学习一个模型,可以很好地推广到具有稀缺标记的训练数据的新类别。

小样本分割的终极目的是利用支持集中的K个训练图像对来“学习”一个模型,使得该模型能对训练图像对中出现的类别的新样本能够实现分割。

2.相关工作

2.1 元学习

元学习解决的是学习如何学习的问题。元学习的思想是学习「学习(训练)」过程。主要有基于记忆Memory的方法、基于预测梯度的方法、利用Attention注意力机制的方法、借鉴LSTM的方法、面向RL的Meta Learning方法、利用WaveNet的方法、预测Loss的方法等等等。

2.2 小样本学习

小样本学习是元学习在监督学习领域的应用,Few-shot Learning

模型大致可分为三类:Mode Based,Metric Based 和 Optimization Based。

其中 Model Based 方法旨在通过模型结构的设计快速在少量样本上更新参数,直接建立输入 x 和预测值 P 的映射函数;Metric Based方法通过度量 batch 集中的样本和 support 集中样本的距离,借助最近邻的思想完成分类;Optimization Based方法认为普通的梯度下降方法难以在 few-shot 场景下拟合,因此通过调整优化方法来完成小样本分类的任务。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值