分析:
sa后缀数组题。正着不好做可以反着想。我们可以思考重复的串有多少个,这就对应着后缀数组求完后求的height数组。每个
height[i]
长度的串可以构成
height[i]
个重复的串,通过总的减去就行了。
刘汝佳的大白sa模板有一些小问题,在此进行了修正。
代码:
/*****************************************************/
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <map>
#include <set>
#include <ctime>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define offcin ios::sync_with_stdio(false)
#define sigma_size 26
#define lson l,m,v<<1
#define rson m+1,r,v<<1|1
#define slch v<<1
#define srch v<<1|1
#define sgetmid int m = (l+r)>>1
#define ll long long
#define ull unsigned long long
#define mem(x,v) memset(x,v,sizeof(x))
#define lowbit(x) (x&-x)
#define bits(a) __builtin_popcount(a)
#define mk make_pair
#define pb push_back
#define fi first
#define se second
const int INF = 0x3f3f3f3f;
const ll INFF = 1e18;
const double pi = acos(-1.0);
const double inf = 1e18;
const double eps = 1e-9;
const ll mod = 1e9+7;
const int maxmat = 10;
const ull BASE = 133333331;
/*****************************************************/
inline void RI(int &x) {
char c;
while((c=getchar())<'0' || c>'9');
x=c-'0';
while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
}
/*****************************************************/
const int maxn = 1e3 + 5;
char tmp[maxn];
int s[maxn];
int rank_sa[maxn], height[maxn];
int sa[maxn], t[maxn], t2[maxn], c[maxn];
int N;
// 以字符值数组s构造sa,字符值从0-m-1
void build_sa(int n, int m) {
int *x = t, *y = t2;
for (int i = 0; i < m; i ++) c[i] = 0;
for (int i = 0; i < n; i ++) c[x[i] = s[i]] ++;
for (int i = 1; i < m; i ++) c[i] += c[i - 1];
for (int i = n - 1; i >= 0; i --) sa[-- c[x[i]]] = i;
for (int k = 1; k < n; k <<= 1) {
int p = 0;
for (int i = n - k; i < n; i ++) y[p ++] = i;
for (int i = 0; i < n; i ++) if (sa[i] >= k) y[p ++] = sa[i] - k;
for (int i = 0; i < m; i ++) c[i] = 0;
for (int i = 0; i < n; i ++) c[x[y[i]]] ++;
for (int i = 1; i < m; i ++) c[i] += c[i - 1];
for (int i = n - 1; i >= 0; i --) sa[-- c[x[y[i]]]] = y[i];
swap(x, y);
p = 1; x[sa[0]] = 0;
for (int i = 1; i < n; i ++)
x[sa[i]] = (y[sa[i - 1]] == y[sa[i]]
&& y[sa[i - 1] + k] == y[sa[i] + k]) ? p - 1 : p ++;
if (p >= n) break;
m = p;
}
}
void getHeight(int n) {
int k = 0;
height[0] = 0;
for (int i = 0; i < n; i ++) rank_sa[sa[i]] = i;
for(int i = 0; i < n - 1; i ++) {
int j = sa[rank_sa[i] - 1];
while(i + k < n && j + k < n && s[i + k] == s[j + k]) k++;
height[rank_sa[i]] = k;
k = max(0, k - 1);
}
}
void Debug() {
// cout<<N<<endl;
for (int i = 0; i <= N; i ++)
cout<<sa[i]<<" ";
cout<<endl;
for (int i = 0; i <= N; i ++)
cout<<height[i]<<" ";
cout<<endl;
}
int main(int argc, char const *argv[]) {
int T; cin>>T;
while (T --) {
scanf("%s", tmp);
N = strlen(tmp);
memset(s, 0, sizeof(s));
for (int i = 0; i <= N; i ++) s[i] = tmp[i];
s[N] = 0;
build_sa(N + 1, 100);
getHeight(N + 1);
// Debug();
ll ans = N * (N + 1) / 2;
for (int i = 2; i <= N; i ++) ans -= height[i];
printf("%I64d\n", ans);
}
return 0;
}