Spark2 ML包,机器学习示例数据Affairs

// affairs:一年来婚外情的频率   
// gender:性别   
// age:年龄   
// yearsmarried:婚龄   
// children:是否有小孩   
// religiousness:宗教信仰程度(5分制,1分表示反对,5分表示非常信仰)  
// education:学历  
// occupation:职业(逆向编号的戈登7种分类)   
// rating:对婚姻的自我评分(5分制,1表示非常不幸福,5表示非常幸福)  


val dataList: List[(Double, String, Double, Double, String, Double, Double, Double, Double)] = List( 
      (0, "male", 37, 10, "no", 3, 18, 7, 4), 
      (0, "female", 27, 4, "no", 4, 14, 6, 4), 
      (0, "female", 32, 15, "yes", 1, 12, 1, 4), 
      (0, "male", 57, 15, "yes", 5, 18, 6, 5), 
      (0, "male", 22, 0.75, "no", 2, 17, 6, 3), 
      (0, "female", 32, 1.5, "no", 2, 17, 5, 5), 
      (0, "female", 22, 0.75, "no", 2, 12, 1, 3), 
      (0, "male", 57, 15, "yes", 2, 14, 4, 4), 
      (0, "female", 32, 15, "yes", 4, 16, 1, 2), 
      (0, "male", 22, 1.5, "no", 4, 14, 4, 5), 
      (0, "male", 37, 15, "yes", 2, 20, 7, 2), 
      (0, "male", 27, 4, "yes", 4, 18, 6, 4), 
      (0, "male", 47, 15, "yes", 5, 17, 6, 4), 
      (0, "female", 22, 1.5, "no", 2, 17, 5, 4), 
      (0, "female", 27, 4, "no", 4, 14, 5, 4), 
      (0, "female", 37, 15, "yes", 1, 17, 5, 5), 
      (0, "female", 37, 15, "yes", 2, 18, 4, 3), 
      (0, "female", 22, 0.75, "no", 3, 16, 5, 4), 
      (0, "female", 22, 1.5, "no", 2, 16, 5, 5), 
      (0, "female", 27, 10, "yes", 2, 14, 1, 5), 
      (0, "female", 22, 1.5, "no", 2, 16, 5, 5), 
      (0, "female", 22, 1.5, "no", 2, 16, 5, 5), 
      (0, "female", 27, 10, "yes", 4, 16, 5, 4), 
      (0, "female", 32, 10, "yes", 3, 14, 1, 5), 
      (0, "male", 37, 4, "yes", 2, 20, 6, 4), 
      (0, "female", 22, 1.5, "no", 2, 18, 5, 5), 
      (0, "female", 27, 7, "no", 4, 16, 1, 5), 
      (0, "male", 42, 15, "yes", 5, 20, 6, 4), 
      (0, "male", 27, 4, "yes", 3, 16, 5, 5), 
      (0, "female", 27, 4, "yes", 3, 17, 5, 4), 
      (0, "male", 42, 15, "yes", 4, 20, 6, 3), 
      (0, "female", 22, 1.5, "no", 3, 16, 5, 5), 
      (0, "male", 27, 0.417, "no", 4, 17, 6, 4), 
      (0, "female", 42, 15, "yes", 5, 14, 5, 4), 
      (0, "male", 32, 4, "yes", 1, 18, 6, 4), 
      (0, "female", 22, 1.5, "no", 4, 16, 5, 3), 
      (0, "female", 42, 15, "yes", 3, 12, 1, 4), 
      (0, "female", 22, 4, "no", 4, 17, 5, 5), 
      (0, "male", 22, 1.5, "yes", 1, 14, 3, 5), 
      (0, "female", 22, 0.75, "no", 3, 16, 1, 5), 
      (0, "male", 32, 10, "yes", 5, 20, 6, 5), 
      (0, "male", 52, 15, "yes", 5, 18, 6, 3), 
      (0, "female", 22, 0.417, "no", 5, 14, 1, 4), 
      (0, "female", 27, 4, "yes", 2, 18, 6, 1), 
      (0, "female", 32, 7, "yes", 5, 17, 5, 3), 
      (0, "male", 22, 4, "no", 3, 16, 5, 5), 
      (0, "female", 27, 7, "yes", 4, 18, 6, 5), 
      (0, "female", 42, 15, "yes", 2, 18, 5, 4), 
      (0, "male", 27, 1.5, "yes", 4, 16, 3, 5), 
      (0, "male", 42, 15, "yes", 2, 20, 6, 4), 
      (0, "female", 22, 0.75, "no", 5, 14, 3, 5), 
      (0, "male", 32, 7, "yes", 2, 20, 6, 4), 
      (0, "male", 27, 4, "yes", 5, 20, 6, 5), 
      (0, "male", 27, 10, "yes", 4, 20, 6, 4), 
      (0, "male", 22, 4, "no", 1, 18, 5, 5), 
      (0, "female", 37, 15, "yes", 4, 14, 3, 1), 
      (0, "male", 22, 1.5, "yes", 5, 16, 4, 4), 
      (0, "female", 37, 15, "yes", 4, 17, 1, 5), 
      (0, "female", 27, 0.75, "no", 4, 17, 5, 4), 
      (0, "male", 32, 10, "yes", 4, 20, 6, 4), 
      (0, "female", 47, 15, "yes", 5, 14, 7, 2), 
      (0, "male", 37, 10, "yes", 3, 20, 6, 4), 
      (0, "female", 22, 0.75, "no", 2, 16, 5, 5), 
      (0, "male", 27, 4, "no", 2, 18, 4, 5), 
      (0, "male", 32, 7, "no", 4, 20, 6, 4), 
      (0, "male", 42, 15, "yes", 2, 17, 3, 5), 
      (0, "male", 37, 10, "yes", 4, 20, 6, 4), 
      (0, "female", 47, 15, "yes", 3, 17, 6, 5), 
      (0, "female", 22, 1.5, "no", 5, 16, 5, 5), 
      (0, "female", 27, 1.5, "no", 2, 16, 6, 4), 
      (0, "female", 27, 4, "no", 3, 17, 5, 5), 
      (0, "female", 32, 10, "yes", 5, 14, 4, 5), 
      (0, "female", 22, 0.125, "no", 2, 12, 5, 5), 
      (0, "male", 47, 15, "yes", 4, 14, 4, 3), 
      (0, "male", 32, 15, "yes", 1, 14, 5, 5), 
      (0, "male", 27, 7, "yes", 4, 16, 5, 5), 
      (0, "female", 22, 1.5, "yes", 3, 16, 5, 5), 
      (0, "male", 27, 4, "yes", 3, 17, 6, 5), 
      (0, "female", 22, 1.5, "no", 3, 16, 5, 5), 
      (0, "male", 57, 15, "yes", 2, 14, 7, 2), 
      (0, "male", 17.5, 1.5, "yes", 3, 18, 6, 5), 
      (0, "male", 57, 15, "yes", 4, 20, 6, 5), 
      (0, "female", 22, 0.75, "no", 2, 16, 3, 4), 
      (0, "male", 42, 4, "no", 4, 17, 3, 3), 
      (0, "female", 22, 1.5, "yes", 4, 12, 1, 5), 
      (0, "female", 22, 0.417, "no", 1, 17, 6, 4), 
      (0, "female", 32, 15, "yes", 4, 17, 5, 5), 
      (0, "female", 27, 1.5, "no", 3, 18, 5, 2), 
      (0, "female", 22, 1.5, "yes", 3, 14, 1, 5), 
      (0, "female", 37, 15, "yes", 3, 14, 1, 4), 
      (0, "female", 32, 15, "yes", 4, 14, 3, 4), 
      (0, "male", 37, 10, "yes", 2, 14, 5, 3), 
      (0, "male", 37, 10, "yes", 4, 16, 5, 4), 
      (0, "male", 57, 15, "yes", 5, 20, 5, 3), 
      (0, "male", 27, 0.417, "no", 1, 16, 3, 4), 
      (0, "female", 42, 15, "yes", 5, 14, 1, 5), 
      (0, "male", 57, 15, "yes", 3, 16, 6, 1), 
      (0, "male", 37, 10, "yes", 1, 16, 6, 4), 
      (0, "male", 37, 15, "yes", 3, 17, 5, 5), 
      (0, "male", 37, 15, "yes", 4, 20, 6, 5), 
      (0, "female", 27, 10, "yes", 5, 14, 1, 5), 
      (0, "male", 37, 10, "yes", 2, 18, 6, 4), 
      (0, "female", 22, 0.125, "no", 4, 12, 4, 5), 
      (0, "male", 57, 15, "yes", 5, 20, 6, 5), 
      (0, "female", 37, 15, "yes", 4, 18, 6, 4), 
      (0, "male", 22, 4, "yes", 4, 14, 6, 4), 
      (0, "male", 27, 7, "yes", 4, 18, 5, 4), 
      (0, "male", 57, 15, "yes", 4, 20, 5, 4), 
      (0, "male", 32, 15, "yes", 3, 14, 6, 3), 
      (0, "female", 22, 1.5, "no", 2, 14, 5, 4), 
      (0, "female", 32, 7, "yes", 4, 17, 1, 5), 
      (0, "female", 37, 15, "yes", 4, 17, 6, 5), 
      (0, "female", 32, 1.5, "no", 5, 18, 5, 5), 
      (0, "male", 42, 10, "yes", 5, 20, 7, 4), 
      (0, "female", 27, 7, "no", 3, 16, 5, 4), 
      (0, "male", 37, 15, "no", 4, 20, 6, 5), 
      (0, "male", 37, 15, "yes", 4, 14, 3, 2), 
      (0, "male", 32, 10, "no", 5, 18, 6, 4), 
      (0, "female", 22, 0.75, "no", 4, 16, 1, 5), 
      (0, "
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值