deeplearning—book—整理——ml

本文探讨了机器学习从统计学角度的本质,介绍了两种主要的统计学方法:频率主义估计和贝叶斯推断,并讨论了设计训练数据集的方法、映射函数与仿射函数的区别,以及数据采集过程中训练集与测试集误差的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、看到的对机器学习本质的一种解释:

--Machine learning isessentially a form of applied statistics with increased emphasis on the use ofcomputers to statistically estimate complicated functions and a decreased emphasison proving confidence intervals around these functions

2、机器学习的统计学的两种方法:

--present the two central approaches to statistics: frequentist estimators and Bayesian inference.

3、如何设计训练数据集(图片数据集除外):

--One common way of describing a dataset is with a design matrix. A design matrix is a matrix containing a different example in each row. Each column of thematrix corresponds to a different feature.

4、区分映射函数和放射函数:

--the mapping from parameters to predictions is still a linear function but themapping from features to predictions is now an affine function.

5、数据采集与测试集训练集误差的联系:

--Suppose we have a probability distributionp(x, y) and we sample from it repeatedly to generate the train set and the testset. For some fixed valuew, the expected training set error is exactly the same asthe expected test set error, because both expectations are formed using the samedataset sampling process. The only difference between the two conditions is thename we assign to the dataset we sample.

--Of course, when we use a machine learning algorithm, we do not fix theparameters ahead of time, then sample both datasets. We sample the training set,then use it to choose the parameters to reduce training set error, then sample thetest set.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值