import torch
from torch import nn
import torchvision
from torchvision import transforms
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import shutil
import os
import glob
from torch.utils.data import DataLoader
from PIL import Image
from torch.utils.data.dataloader import default_collate
spices = ['cloudy', 'rain', 'shine', 'sunrise']
# 通过自定义dataset类的方式创建dataset
# 自定义类有两个要点,第一个要点是继承的父类是torch.utils.data.Dataset,第二个要点是要重写collate_fn并且在DataLoader中指定collate_fn=LEI.collate_fn
class MYDataset(torch.utils.data.Dataset):
def __init__(self, image_path, labels, transformation):
self.images = image_path
self.labels = labels
self.transformation = transformation
def __getitem__(self, item):
img = Image.open(self.images[item])
label = self.labels[item]
# 判断图片是否是三通道图片
if np.asarray(img).shape[-1] == 3:
img = self.transformation(img)
return img, torch.tensor(label).type(torch.LongTensor)
else:
return self.__getitem__(item + 1)
def __len__(self):
return len(self.images)
@staticmethod
def collate_fn(batch):
batch = [sample for sample in batch if sample is not None]
return default_collate(batch)
train_transformation = transforms.Compose([
transforms.Resize((96, 96)),
# 数据增强
# transforms.RandomCrop(64),
transforms.RandomHorizontalFlip(0.2),
transforms.RandomVerticalFlip(0.2),
transforms.RandomRotation(90),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[1, 1, 1])
])
valid_transformation = transforms.Compose([
transforms.Resize((96, 96)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[1, 1, 1])
])
file_names2 = glob.glob('./dataset/*jpg')
index = np.random.permutation(len(file_names2))
labels = []
dict_spec = dict((c, i) for i, c in enumerate(spices))
for file_name in file_names2:
for spec in spices:
if spec in file_name:
labels.append(dict_spec[spec])
labels = np.array(labels)[index]
file_names2 = np.array(file_names2)[index]
train_split = int(len(index) * 0.8)
train_files, valid_files = file_names2[: train_split], file_names2[train_split:]
train_labels, valid_labels = labels[: train_split], labels[train_split:]
train_ds2 = MYDataset(train_files, train_labels, train_transformation)
valid_ds2 = MYDataset(valid_files, valid_labels, valid_transformation)
train_dl2 = DataLoader(train_ds2, batch_size=32, shuffle=True, drop_last=True, collate_fn=MYDataset.collate_fn)
valid_dl2 = DataLoader(valid_ds2, batch_size=64, drop_last=True, collate_fn=MYDataset.collate_fn)
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 32, 3, 1, 1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(2, 2)
)
self.conv2 = nn.Sequential(
nn.Conv2d(32, 64, 3, 1, 1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, 2)
)
self.conv3 = nn.Sequential(
nn.Conv2d(64, 128, 3, 1, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(2, 2)
)
self.fc1 = nn.Sequential(
nn.Linear(128 * 12 * 12, 1024, bias=False),
nn.BatchNorm1d(1024),
nn.ReLU()
)
self.fc2 = nn.Sequential(
nn.Linear(1024, 256, bias=False),
nn.BatchNorm1d(256),
nn.ReLU()
)
self.fc3 = nn.Linear(256, 4)
def forward(self, inputs):
x = self.conv1(inputs)
x = self.conv2(x)
x = self.conv3(x)
x = nn.Flatten()(x)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
model2 = Net()
loss_fn = torch.nn.CrossEntropyLoss()
loss_fn2 = torch.nn.CrossEntropyLoss()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model2 = model2.to(device)
optimizer2 = torch.optim.Adam(model2.parameters(), lr=0.001)
def cal_acc(y_pred, y_true):
acc = (torch.argmax(y_pred, dim=1) == y_true).sum().item()
return acc
def train_step(epoch, model, train_dl, valid_dl, loss_func, optimizer):
total_train_loss = 0
total_train_acc = 0
total_train = 0
total_valid_loss = 0
total_valid_acc = 0
total_valid = 0
model.train()
for x, y in train_dl:
x, y = x.to(device), y.to(device)
prediction = model(x)
train_loss = loss_func(prediction, y)
print(train_loss)
optimizer.zero_grad()
train_loss.backward()
optimizer.step()
with torch.no_grad():
total_train_loss += train_loss.item()
total_train_acc += cal_acc(prediction, y)
total_train += y.size(0)
total_train_loss = total_train_loss / total_train
total_train_acc = total_train_acc / total_train
model.eval()
for x, y in valid_dl:
with torch.no_grad():
x, y = x.to(device), y.to(device)
prediction = model(x)
valid_loss = loss_func(prediction, y)
total_valid_loss += valid_loss.item()
total_valid_acc += cal_acc(prediction, y)
total_valid += y.size(0)
total_valid_loss = total_valid_loss / total_valid
total_valid_acc = total_valid_acc / total_valid
print('epoch: %d, train_loss: %3.3f, train_acc: %3.3f, valid_loss: %3.3f, valid_acc: %3.3f' % (
epoch, total_train_loss, total_train_acc, total_valid_loss, total_valid_acc))
return total_train_loss, total_train_acc, total_valid_loss, total_valid_acc
def model_fit(model, train_dl, valid_dl, loss_func, optimizer, epochs=10):
history = {'train_loss': [],
'train_acc': [],
'valid_loss': [],
'valid_acc': []}
for epoch in range(epochs):
train_loss, train_acc, valid_loss, valid_acc = train_step(epoch, model, train_dl, valid_dl, loss_func, optimizer)
history['train_loss'].append(train_loss)
history['train_acc'].append(train_acc)
history['valid_loss'].append(valid_loss)
history['valid_acc'].append(valid_acc)
return history
def draw_curve(history):
pd.DataFrame(history).plot()
plt.gca().set_ylim(0, 1)
plt.grid(True)
plt.show()
history2 = model_fit(model2, train_dl2, valid_dl2, loss_fn2, optimizer2)