如果你对这些面试题的答案感兴趣的话,记得添加下方,我会在后台将完整的PDF答案分享给你。
-
你了解ReAct吗,它有什么优点?
-
解释一下langchain Agent的概念
-
langchain 有哪些替代方案?
-
langchain token计数有什么问题?如何解决?
-
LLM预训练阶段有哪几个关键步骤?
-
RLHF模型为什么会表现比SFT更好?
-
参数高效的微调(PEFT)有哪些方法?
-
LORA微调相比于微调适配器或前缀微调有什么优势?
-
你了解过什么是稀疏微调吗?
-
训练后量化(PTQ)和量化感知训练(QAT)有什么区别?
-
LLMs中,量化权重和量化激活的区别是什么?
-
AWQ量化的步骤是什么?
-
介绍一下GPipe推理框架
-
矩阵乘法如何做数量并行?
-
请简述TPPO算法流程,它跟TRPO的区别是什么?
-
什么是检索增强生成(RAG)?
-
目前主流的中文向量模型有哪些?
-
为什么LLM的知识更新很困难?
-
RAG和微调的区别是什么?
-
大模型一般评测方法及其准是什么?
-
什么是Kv cache技术,它具体是如何实现的?
-
DeepSpeed推理对算子融合做了哪些优化?
-
简述一下FlashAttention的原理
-
MHA、GQA、MQA三种注意力机制的区别是什么?
-
请介绍一下微软的ZeRO优化器
-
Paged Attention的原理是什么,解决了LLM中的什么问题?
-
什么是投机采样技术,请举例说明?
-
简述GPT和BERT的区别
-
讲一下GPT系列模型的是如何演进的?
-
为什么现在的大模型大多是decoder-only的架构?
-
讲一下生成式语言模型的工作机理
-
哪些因素会导致LLM中的偏见?
-
LLM中的因果语言建模与掩码语言建模有什么区别?
-
如何减轻LLM中的“幻觉”现象?
-
解释ChatGPT的“零样本”和“少样本”学习的概念
-
你了解大型语言模型中的哪些分词技术?
-
如何评估大语言模型(LLMs)的性能?
-
如何缓解LLMs复读机问题?
-
请简述下Transformer基本原理
-
为什么Transformer的架构需要多头注意力机制?
-
为什么transformers需要位置编码?
-
transformer中,同一个词可以有不同的注意力权重吗?
-
Wordpiece与BPE之间的区别是什么?
-
有哪些常见的优化LLMs输出的技术?
-
GPT-3拥有的1750亿参数,是怎么算出来的?
-
温度系数和top-p、top-k参数有什么区别?
-
为什么transformer块使用LayerNorm而不是BatchNorm?
-
介绍一下post layer norm和pre layer norm的区别
-
什么是思维链(CoT)提示?
-
你觉得什么样的任务或领域适合用思维链提示?
-
目前主流的开源模型体系有哪些?
-
prefix LM和causal LM区别是什么?
-
涌现能力是啥原因?
-
大模型LLM的架构介绍?
-
什么是LLMs复读机问题?
-
为什么会出现LLMs复读机问题?
-
如何缓解LLMs复读机问题?
-
llama输入句子长度理论上可以无限长吗?
-
什么情况下用Bert模型,什么情况下用LLama、ChatGLM类大模型,咋选?
-
各个专长领域是否需要各自的大模型来服务?
-
如何让大模型处理更长的文本?
-
为什么大模型推理时显存涨的那么多还一直占着?
-
大模型在gpu和cpu上推理速度如何?
-
推理速度上,int8和fp16比起来怎么样?
-
大模型有推理能力吗?
-
大模型生成时的参数怎么设置?
-
有哪些省内存的大语言模型训练/微调/推理方法?
-
如何让大模型输出台规化
-
应用模式变更
-
大模型怎么评测?
-
大模型的honest原则是如何实现的?
-
模型如何判断回答的知识是训练过的已知的知识,怎么训练这种能力?
-
奖励模型需要和基础模型一致吗?
-
RLHF在实践过程中存在哪些不足?
-
如何解决人工产生的偏好数据集成本较高,很难量产问题?
-
如何解决三个阶段的训练(SFT->RM->PPO)过程较长,更新迭代较慢问题?
-
如何解决PPO的训练过程中同时存在4个模型(2训练,2推理),对计算资源的要求较高问题?
-
如何给LLM注入领域知识?
-
如果想要快速检验各种模型,该怎么办?
-
预训练数据Token重复是否影响模型性能?
-
什么是位置编码?
-
什么是绝对位置编码?
-
什么是相对位置编码?
-
旋转位置编码RoPE思路是什么?
-
旋转位置编码RoPE有什么优点?
-
什么是长度外推问题?
-
长度外推问题的解决方法有哪些?
-
ALiBi(Attention with Linear Biases)思路是什么?
-
ALiBi(Attention with Linear Biases)的偏置矩阵是什么?有什么作用?
-
ALiBi(Attention with Linear Biases)有什么优点?
-
Layer Norm的计算公式写一下?
-
RMS Norm的计算公式写一下?
-
RMS Norm相比于Layer Norm有什么特点?
-
Deep Norm思路?
-
写一下Deep Norm代码实现?
-
Deep Norm有什么优点?
-
LN在LLMs中的不同位置有什么区别么?如果有,能介绍一下区别么?
-
LLMs各模型分别用了哪种Layer normalization?
-
介绍一下FFN块计算公式?
-
介绍一下GeLU计算公式?
-
介绍一下Swish计算公式?
-
介绍一下使用GLU线性门控单元的FFN块计算公式?
-
介绍一下使用GeLU的GLU块计算公式?
-
介绍一下使用Swish的GLU块计算公式?
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
优快云粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传优快云,朋友们如果需要可以扫描下方二维码&点击下方优快云官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉优快云大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
优快云粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传优快云,朋友们如果需要可以扫描下方二维码&点击下方优快云官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉优快云大礼包:《最新AI大模型学习资源包》免费分享 👈👈