Chiaki has n intervals and the i-th of them is [li, ri]. She wants to delete some intervals so that there does not exist three intervals a, b and c such that a intersects with b, b intersects with c and c intersects with a.
Chiaki is interested in the minimum number of intervals which need to be deleted.
Note that interval a intersects with interval b if there exists a real number x such that la ≤ x ≤ ra and lb ≤ x ≤ rb.
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer n (1 ≤ n ≤ 50000) -- the number of intervals.
Each of the following n lines contains two integers li and ri (1 ≤ li < ri ≤ 109) denoting the i-th interval. Note that for every 1 ≤ i < j ≤ n, li ≠ lj or ri ≠ rj.
It is guaranteed that the sum of all n does not exceed 500000.
Output
For each test case, output an integer m denoting the minimum number of deletions. Then in the next line, output m integers in increasing order denoting the index of the intervals to be deleted. If m equals to 0, you should output an empty line in the second line.
Sample Input
1 11 2 5 4 7 3 9 6 11 1 12 10 15 8 17 13 18 16 20 14 21 19 22
Sample Output
4 3 5 7 10
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<string>
#include<map>
#include<set>
using namespace std;
const int N = 50000 + 100;
struct P
{
int x,y,id;
bool operator < (const P& t1)const
{
return y<t1.y;
}
}a[N];
int b[N];
int vis[N];
int main()
{
int T,n,i,j,end,ans;
scanf("%d",&T);
while(T--) {
memset(vis,0,sizeof(vis));
scanf("%d",&n);
for(i=1;i<=n;i++) {
scanf("%d%d",&a[i].x,&a[i].y);
a[i].id=i;
}
sort(a+1,a+1+n);
ans=end=0;
P last = a[1];
for(i=2;i<=n;i++) {
if(a[i].x<=end) {
vis[i]=1;
continue;
}
if(a[i].x<=last.y) end = last.y;
last = a[i];
}
for(i=1;i<=n;i++)
if(vis[i]) b[ans++]=a[i].id;
printf("%d\n",ans);
sort(b,b+ans);
for(i=0;i<ans;i++) printf("%d ",b[i]);
printf("\n");
}
return 0;
}