"""
Logistic Regression Example
This example is using MNIST handwritten digits.
The dataset contains 60,000 examples for training and 10,000 examples for testing.
The digits have been size-normalized and centered in a fixed-size image (28x28 pixels) with values from 0 to 1.
For simplicity, each image has been flattened and converted to a 1-D numpy array of 784 features (28*28).
"""
import tensorflow as tf
# Import MINST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("./data/", one_hot=True)
print("mnist:", mnist)
# Parameters
learning_rate = 0.01
training_epochs = 100
batch_size = 100
display_step = 1
# tf Graph Input
x = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28 * 28 = 784
y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes
# Set model weights
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
print("W:", W)
print("b:", b)
# Construct model
pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
print("tf.matmul(x, W) + b:", tf.matmul(x, W) + b)
# tf.matmul(x, W) + b: Tensor("add_1:0", shape=(?, 10), dtype=float32)
# tf.matmul(x, W): Tensor("MatMul_1:0", shape=(?, 10), dtype=float32)
# Minimize error using cross entropy
cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices=1))
# Gradient Descent
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Initialize the variables(i,e assign their default value)
init = tf.global_variables_initializer()
# Start training
with tf.Session() as sess:
sess.run(init)
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Fit training using batch data
_, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,
y: batch_ys})
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if (epoch+1) % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print("Optimization Finished!")
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy for 3000 examples
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print ("Accuracy:", accuracy.eval({x: mnist.test.images[:3000], y: mnist.test.labels[:3000]}))
if __name__ == "__main__":
pass
Logistic Regression Example
最新推荐文章于 2024-05-12 18:41:45 发布