浅谈MapReduce

本文深入探讨MapReduce,一种分布式计算模型,适用于大规模数据处理。通过词频统计和气象数据分析示例阐述其工作原理,包括map和reduce函数的定义。接着介绍MapReduce的架构,包括任务调度、容灾策略和网络优化,强调其易于编程、良好扩展性和容灾能力,但也指出其不适用于实时计算和流式处理的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MapReduce是一个抽象的分布式计算模型,主要对键值对进行运算处理。用户需要提供两个自定义函数:

  • map:用于接受输入,并生成中间键值对。
  • reduce:接受map输出的中间键值对集合,进行sorting后进行合并和数据规模的缩减,并进行期望信息的提取。
    用户通过map和reduce函数声明键值对的处理方式,而调度,并行计算和容灾等底层问题则是对用户透明的。

1、示例

1.1 词频统计

在这个案例中,目标是将文本作为输入,将其中的单词出现频率进行统计。 此时,map和reduce的伪代码如下:

map(String key, String value): 
    // key: document name
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

garagong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值