1. 定义
z
=
f
(
x
,
y
)
vol
=
∬
R
f
(
x
,
y
)
d
A
vol
=
∫
x
m
i
n
x
m
a
x
S
(
x
)
d
x
For given x,
S
(
x
)
=
∫
y
m
i
n
(
x
)
y
m
a
x
(
x
)
f
(
x
,
y
)
d
y
⇒
vol
=
∫
x
m
i
n
x
m
a
x
∫
y
m
i
n
(
x
)
y
m
a
x
(
x
)
f
(
x
,
y
)
d
y
d
x
z=f(x,y) \quad \text{vol}=\iint_{R}{f(x,y)}\mathrm{d}{A} \\ \text{vol}=\int_{x_{min}}^{x_{max}}{S(x)}{\mathrm{d}x} \\ \text{For given x, } S(x)=\int_{y_{min}(x)}^{y_{max}(x)} {f(x,y)}\mathrm{d}y \\ \Rightarrow \text{vol} = \int_{x_{min}}^{x_{max}} {\int_{y_{min}(x)}^{y_{max}(x)} {f(x,y)}\mathrm{d}y} \mathrm{d}x
z=f(x,y)vol=∬Rf(x,y)dAvol=∫xminxmaxS(x)dxFor given x, S(x)=∫ymin(x)ymax(x)f(x,y)dy⇒vol=∫xminxmax∫ymin(x)ymax(x)f(x,y)dydx
计算二重积分时,利用切面,将二重积分转化为两个单变量积分
附录
附录1. 二重积分
z = − x 2 − y 2 + 1 ∫ 0 1 ∫ 0 1 − x 2 ( − x 2 − y 2 + 1 ) d y d x = π 8 z=-x^2-y^2+1 \\ \int_0^1 \int_0^{\sqrt{1-x^2}}(-x^2-y^2+1)\mathrm{d}y \mathrm{d}x = \frac{\pi}{8} z=−x2−y2+1∫01∫01−x2(−x2−y2+1)dydx=8π
clear
clc
clf
inte = 0.05;
X = 0:inte:1-inte;
j = 1;
for i=X
disp(i);
subplot(1,2,1);
f = @(x,y,z) x.^2 + y.^2 + z - 1;
interval = [-5 5 -5 5 0 5];
fimplicit3(f,interval,'FaceAlpha',.8);
hold on
% 画切面
f = @(x,y,z) x - i;
interval = [0 1 0 1 0 2];
fimplicit3(f,interval);
axis([-2 2 -2 2 0 4]);
axis vis3d
xlabel('x轴');
ylabel('y轴');
zlabel('z轴');
j = j + 1;
% if (j ~= length(X))
hold off
% end
subplot(1,2,2);
% -1 <= x <= 1, -1 <= y <= 0 的积分
XA = i:0.01:i+inte;
YA = 0:0.01:1;
[XAA, YAA] = meshgrid(XA, YA);
ZAA = - XAA.^2 - YAA.^2 + 1;
ZAA(1,1) = 0;
meshz(XAA,YAA,ZAA);
hold on
axis([-2 2 -2 2 0 4]);
axis vis3d
xlabel('x轴');
ylabel('y轴');
zlabel('z轴');
M(j) = getframe;
end
% movie2gif(M, 'iint.gif', 'LoopCount', 0, 'DelayTime', 0);