对Lucene PhraseQuery的slop的理解(转载)

本文深入探讨了Lucene中的PhraseQuery概念及其参数slop的设置方法,通过实例解释了如何通过短语进行精准匹配及允许的间隔距离。
[color=blue]文章来自:http://myzhangjl.blog.sohu.com/95911870.html
这几天看Lucene,看到检索那块,被PhraseQuery折腾了一阵,那本《Lucene In Action》里的代码版本太旧了,也不知是翻译的问题还是我的理解问题,总之在看PhraseQuery的设置slop时费了半天劲,不过,总算是搞明白了,发个帖子来分享一下:

所谓PhraseQuery,就是通过短语来检索,比如我想查“big car”这个短语,那么如果待匹配的document的指定项里包含了"big car"这个短语,这个document就算匹配成功。可如果待匹配的句子里包含的是“big black car”,那么就无法匹配成功了,如果也想让这个匹配,就需要设定slop,先给出slop的概念:slop是指两个项的位置之间允许的最大间隔距离,下面我举例来解释:

我的待匹配的句子是:the quick brown fox jumped over the lazy dog.

例1: 如果我想用“quick fox”来匹配出上面的句子,我发现原句里是quick [brown] fox,就是说和我的“quick fox”中间相差了一个单词的距离,所以,我这里把slop设为1,表示quick和fox这两项之间最大可以允许有一个单词的间隔,这样所有“quick [***] fox”就都可以被匹配出来了。

例2:如果我想用“fox quick”来匹配出上面的句子,这也是可以的,不过比例1要麻烦,我们需要看把“fox quick”怎么移动能形成“quick [***] fox”,如下表所示,把fox向右移动3次即可:

fox quick
1 fox|quick
2 quick fox
3 quick fox

例3:如果我想用“lazy jumped quick”该如何匹配上面的句子呢?这个比例2还要麻烦,我们要考虑3个单词,不管多少个单词,slop表示的是间隔的最大距离,详细起见,我们分别来看每种组合:(我的待匹配的句子是:the quick brown fox jumped over the lazy dog.)

•lazy jumped:原句是jumped [over] [the] lazy,就是说它们两个之间间隔了2个词,如下所示:需要把lazy向右移动4位

lazy jumped
1 lazy|jumped
2 jumped lazy
3 jumped lazy
4 jumped lazy


• lazy jumped quick:我们主要看lazy和quick,但是由于jumped是在中间,所以移动的时候还是要把jumped考虑在内,原句里lazy和quick的关系是:quick [brown] [fox] [jumped] [over] [the] lazy ,quick lazy中间间隔了5个词,所以如下图所示,把lazy向右移动8次
lazy jumped
quick
1 lazy|jumped quick

2 jumped lazy|quick

3 jumped quick lazy

4 jumped quick lazy

5 jumped quick lazy

6 jumped quick lazy

7 jumped quick lazy

8 jumped quick lazy

• 最后是jumped qucik,这里不详细画表格了,大家可以自己试试,应该是把jumped向右移动4次。
综合以上3种情况,所以我们需要把slop设为8才令“lazy jumped quick”可以匹配到原句。

OK,就到这里吧,希望对大家有帮助,如果我理解有误,也请指出,谢谢~


[/color]
内容概要:本文介绍了一套针对智能穿戴设备的跑步/骑行轨迹记录系统实战方案,旨在解决传统运动APP存在的定位漂移、数据断层和路径分析单一等问题。系统基于北斗+GPS双模定位、惯性测量单元(IMU)和海拔传感器,实现高精度轨迹采集,并通过卡尔曼滤波算法修正定位误差,在信号弱环境下利用惯性导航补位,确保轨迹连续性。系统支持跑步与骑行两种场景的差异化功能,包括实时轨迹记录、多维度路径分析(如配速、坡度、能耗)、数据可视化(地图标注、曲线图、3D回放)、异常提醒及智能优化建议,并可通过蓝牙/Wi-Fi同步数据至手机APP,支持社交分享与专业软件导出。技术架构涵盖硬件层、设备端与手机端软件层以及云端数据存储,强调低功耗设计与用户体验优化。经过实测验证,系统在定位精度、续航能力和场景识别准确率方面均达到预期指标,具备良好的实用性和扩展性。; 适合人群:具备一定嵌入式开发或移动应用开发经验,熟悉物联网、传感器融合与数据可视化的技术人员,尤其是从事智能穿戴设备、运动健康类产品研发的工程师和产品经理;也适合高校相关专业学生作为项目实践参考。; 使用场景及目标:① 开发高精度运动轨迹记录功能,解决GPS漂移与断点问题;② 实现跑步与骑行场景下的差异化数据分析与个性化反馈;③ 构建完整的“终端采集-手机展示-云端存储”系统闭环,支持社交互动与商业拓展;④ 掌握低功耗优化、多源数据融合、动态功耗调节等关键技术在穿戴设备中的落地应用。; 阅读建议:此资源以真实项目为导向,不仅提供详细的技术实现路径,还包含硬件选型、测试验证与商业扩展思路,建议读者结合自身开发环境,逐步实现各模块功能,重点关注定位优化算法、功耗控制策略与跨平台数据同步机制的设计与调优。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值