Opencv定义的图像细化函数

细化函数定义如下所示:

//对输入图像进行细化
void ThinImage(IplImage* src, IplImage* dst, int iterations)
{
 CvSize size = cvGetSize(src);

 cvCopy(src, dst);//拷贝一个数组给另一个数组
    int n = 0,i = 0,j = 0;
 for(n=0; n<iterations; n++)
 {
IplImage* t_image;
 
 t_image = cvCloneImage(dst);
  for(i=0; i<size.height;  i++)
  {
   for(int j=0; j<size.width; j++)
   {
    if(CV_IMAGE_ELEM(t_image,byte,i,j)==1)
    {
     int ap=0;
     int p2 = (i==0)?0:CV_IMAGE_ELEM(t_image,byte, i-1, j);
     int p3 = (i==0 || j==size.width-1)?0:CV_IMAGE_ELEM(t_image,byte, i-1, j+1);
     if (p2==0 && p3==1)
     {
      ap++;
     }
     int p4 = (j==size.width-1)?0:CV_IMAGE_ELEM(t_image,byte,i,j+1);
     if(p3==0 && p4==1)
     {
      ap++;
     }
     int p5 = (i==size.height-1 || j==size.width-1)?0:CV_IMAGE_ELEM(t_image,byte,i+1,j+1);
     if(p4==0 && p5==1)
     {
      ap++;
     }
     int p6 = (i==size.height-1)?0:CV_IMAGE_ELEM(t_image,byte,i+1,j);
     if(p5==0 && p6==1)
     {
      ap++;
     }
     int p7 = (i==size.height-1 || j==0)?0:CV_IMAGE_ELEM(t_image,byte,i+1,j-1);
     if(p6==0 && p7==1)
     {
      ap++;
     }
     int p8 = (j==0)?0:CV_IMAGE_ELEM(t_image,byte,i,j-1);
     if(p7==0 && p8==1)
     {
      ap++;
     }
     int p9 = (i==0 || j==0)?0:CV_IMAGE_ELEM(t_image,byte,i-1,j-1);
     if(p8==0 && p9==1)
     {
      ap++;
     }
     if(p9==0 && p2==1)
     {
      ap++;
     }
     if((p2+p3+p4+p5+p6+p7+p8+p9)>1 && (p2+p3+p4+p5+p6+p7+p8+p9)<7)
     {
      if(ap==1)
      {
       if(p2*p4*p8==0)
       {
        if(p2*p6*p8==0)
        {
         CV_IMAGE_ELEM(dst, byte,i,j)=0;
        }
       }
      }
     }                    
    }

   }

  }            
  cvReleaseImage(&t_image);

}

 //将二值图像转换成灰度,以便显示
  i = 0;j = 0;
  size = cvGetSize(dst);
 for(i=0; i<size.height;  i++)
 {
  for(j=0; j<size.width; j++)
  {
   if(CV_IMAGE_ELEM(dst,uchar,i,j)==1)
   {
    CV_IMAGE_ELEM(dst,uchar,i,j) = 255;
   }
   else
   {
    CV_IMAGE_ELEM(dst,uchar,i,j) = 0;
   }
  }
 }

}
左边是细化前图像,右边是细化之后图像


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值