Sumsets
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3226 Accepted Submission(s): 1288
Problem Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
Source
USACO 2005 January Silver
Recommend
teddy | We have carefully selected several similar problems for you: 2602 2716 2710 2717 2715
题意:问一个数划分成2的幂的和有几种分法》》》,由于方法数很大,对10^9取余;
思路:看了看别人的博客,递推得到:如果这个数是偶数,那么他等于他前面的那个数的方法数,否则等于他前面的那个数加上他的一半的那个数的方法数》》》
公式为:s[i]=s[i-1]; (偶数)
s[i]=(s[i-1]+s[i/2])%mod;
之后打个表就可以了,复杂度O(1);
下面附上我的代码:
#include<cstdio>
const int N=1e6+10;
const int mod=1e9;
int s[N];
void solve()
{
s[1]=1;
for(int i=2;i<=N;i++)
{
if(i%2) s[i]=s[i-1];
else
s[i]=(s[i-1]+s[i/2])%mod;
}
}
int main()
{
int n;
solve();
while(~scanf("%d",&n))
printf("%d\n",s[n]);
return 0;
}

本文探讨了求和集问题,即如何将一个整数表示为2的幂次的不同组合之和,并提供了一种高效的解决方案。通过递推公式,文章详细解释了如何计算这种表示方式的数量,并给出了一段实现该算法的C++代码。
731

被折叠的 条评论
为什么被折叠?



