c++中的this 指针

介绍

C++中的this指针在类的nonstatic member function 中是一个隐藏的参数,在static member function 中没有this指针.this指针中保存的是调用nonstatic member function的类对象的地址.类的nonstatic member function 之所以会有这个隐藏的参数是因为编译器在调用类的nonstatic member function 时,要将它们转换为普通的nonmember function.为了让编译器区别正在处理的是哪个类对象,所以会将类对象的地址传递nonstatic member function 的this指针,只不过这个this指针是隐藏的,比如:

myDate.setMonth( 3 );  
会被转换为:

setMonth( &myDate, 3 );  

this指针类型

The type of this in a member function is described by the following syntax, where cv-qualifier-list is determined from the member functions declarator and can be const or volatile (or both), and class-type is the name of the class:

[cv-qualifier-list] class-type  * const this
In other words,  this  is always a const pointer; it cannot be reassigned. The  const  or  volatile  qualifiers used in the member function declaration apply to the class instance pointed to by  this  in the scope of that function.

The following table explains more about how these modifiers work.

Modifier Meaning
const Cannot change member data; cannot invoke member functions that are not const.
volatile Member data is loaded from memory each time it is accessed; disables certain optimizations.

It is an error to pass a const object to a member function that is not const. Similarly, it is an error to pass a volatile object to a member function that is not volatile.(把一个const object传递给一个非constmember function会发生错误 )

Member functions declared as const cannot change member data — in such functions, the this pointer is a pointer to a const object.

在什么情况下使用this指针

  1. When local variable’s name is same as member’s name
    #include<iostream>
    using namespace std;
     
    /* local variable is same as a member's name */
    class Test
    {
    private:
       int x;
    public:
       void setX (int x)
       {
           // The 'this' pointer is used to retrieve the object's x
           // hidden by the local variable 'x'
           this->x = x;
       }
       void print() { cout << "x = " << x << endl; }
    };
     
    int main()
    {
       Test obj;
       int x = 20;
       obj.setX(x);
       obj.print();
       return 0;
    }

    For constructors, initializer list can also be used when parameter name is same as member’s name.
  2. To return reference to the calling object
When a reference to a local object is returned, the returned reference can be used to chain function calls on a single object.
#include<iostream>
using namespace std;
 
class Test
{
private:
  int x;
  int y;
public:
  Test(int x = 0, int y = 0) { this->x = x; this->y = y; }
  Test &setX(int a) { x = a; return *this; }
  Test &setY(int b) { y = b; return *this; }
  void print() { cout << "x = " << x << " y = " << y << endl; }
};
 
int main()
{
  Test obj1(5, 5);
 
  // Chained function calls.  All calls modify the same object
  // as the same object is returned by reference
  obj1.setX(10).setY(20);
 
  obj1.print();
  return 0;
}
output
x = 10 y = 20




基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
<think>嗯,用户这次聚焦在C++this指针存储和使用机制上,看来ta正在深入学习面向对象编程的底层实现。结合之前的讨论,用户应该已经理解了变量存储的基本原理,现在想延伸到类成员函数的特殊机制。用户提供的参考资料质量很高,特别是引用[4]明确指出了this指针的隐含特性和编译器传递机制。值得注意的是,ta似乎对“this指针存储位置”这个点存在认知困惑——这其实是个常见的理解陷阱,因为this本身并不像普通变量那样占用固定内存空间。从系统要求看,需要特别注意数学公式和代码的规范呈现。对于this指针的讨论,重点在于澄清三个核心问题:1)this的物理存在形式(本质是寄存器中的地址)2)它在不同调用场景的传递方式(thiscall与cdecl区别)3)标准禁止对this取地址的底层原因(右值特性)用户可能还隐含想知道:为什么设计成这种隐藏参数模式?这就要从C++与C的兼容性说起了。在展示方案中,用寄存器示意图配合汇编说明应该最直观,毕竟用户之前对内存布局接受良好。需要警惕的是用户可能混淆“指针存储位置”和“指针指向对象的位置”。那个空指针调用成员函数的例子很有教学意义,能生动展示this的传递本质——即使是空指针,只要不访问成员变量,函数照样能运行。最后生成的延伸问题要扣住用户的学习轨迹:从存储机制自然延伸到使用陷阱(比如lambda捕获this的悬垂引用问题),再过渡到现代C++的改进方案(explicitthis),这样形成知识闭环。</think> ### C++ this指针的存储与使用机制分析 #### 一、this指针的本质与存储原理 1. **核心机制** this指针是**编译器自动生成的隐含参数**,本质是当前对象的内存地址: ```cpp // 编译器将 obj.method() 转化为: ClassName::method(&obj, params) // this指针作为第一个参数传入[^4] ``` - **存储位置**:通过寄存器(x86-64中通常用`rdi`寄存器)或栈空间传递 - **非物理存储**:本身不占用对象内存空间,仅作为函数调用的上下文参数[^4] 2. **内存验证实验** ```cpp class Test { public: void showAddr() { cout << "this地址: " << this << endl; } int data; }; int main() { Test t; cout << "对象地址: " << &t << endl; // 输出:0x7ffde2c7b30 t.showAddr(); // 输出:0x7ffde2c7b30 (与&t相同) } ``` > 验证this指向对象自身的起始地址[^2] #### 二、使用场景与语法规范 1. **显式使用场景** | 场景 | 示例代码 | 作用 | |---------------------|-----------------------------------|-----------------------| | 链式调用 | `obj.setX(1).setY(2);` | 返回*this实现级联[^1] | | 解决命名冲突 | `this->data = data;` | 区分成员与局部变量 | | 返回当前对象 | `return *this;` | 用于拷贝赋值等操作 | 2. **隐式访问机制** 所有成员访问自动附加this指针: ```cpp void display() { cout << data; // 实际执行 cout << this->data; } ``` #### 三、关键特性深度解析 1. **右值性质** - 禁止获取地址:`&this` 非法操作(编译错误)[^4] - 禁止赋值:`this = nullptr;` 违反常量约束 ```mermaid graph LR A[成员函数调用] --> B[编译器注入this参数] B --> C{this指针类型} C --> D[ClassName *const] // 普通成员函数 C --> E[const ClassName *const] // const成员函数 ``` 2. **空指针调用问题** ```cpp Test* ptr = nullptr; ptr->showAddr(); // 崩溃位置: // 访问成员变量:this->data (空指针解引用) // 不访问成员:可能运行(但属于未定义行为) ``` #### 四、与其他语言的对比 | 特性 | C++ | Java/Python | |---------------------|------------------------|---------------------| | 传递方式 | 显式寄存器/栈传递 | 隐式首个参数 | | 显式引用 | 支持 this->member | 支持 this.member | | 空指针安全 | 无 | 自动抛出NullPointerException |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值