4 (Part I) IME: Image Manipulation and EnhancementJava

Java Python Assignment 4 (Part I)

IME: Image Manipulation and Enhancement

1 Introduction

In this series of assignments, you will build an image processing application. You will create text-based and interactive GUI-based user interfaces for this program. Although you will implement a few simple and not-so-simple image processing effects, your system will have "good bones" through design that will streamline adding more image manipulations.

1.1 Images

Whatever the file format (jpg, png, bmp, etc.) an image is basically a sequence of pixels. Each pixel has a position in the image (row, column) and a color. For a greyscale image there is only one value per pixel. On a scale of 0-1, 0 indicates black and 1 indicates white. Values in between indicate shades of    grey. This value is traditionally represented using an integer. The number of bits used to store this value dictateshow many "levels of grey" are supported. For example, an 8-bit representation creates 256 distinct levels (including black and white).

1.1.1 Color Representation

For a color image,the pixel's color is represented by breaking it into individual components (usually 3) in  some way. The most common representation is the red-green-blue (RGB) model. In this model, a color is represented by three numbers (components): red, green, blue. Any color is a combination of these three base colors. On a scale of 0-1, black is represented as (0,0,0),white as (1,1,1) and bright, pure yellow is  represented as (1,1,0). There are several ways of measuring "brightness" or "intensity":

· Value: the maximum value of the three components for each pixel

· Intensity: the average of the three components for each pixel.

· Luma: the weighted sum 0.2126r+0.7152g+0.0722b

The three components can also be represented using integers. Each component is also called a

"channel". If 8 bits are used per channel, this creates the (traditionally-termed) 24-bit image! Some formats also support transparency (e.g. the PNG format): this is done by adding a fourth component.

To see how various colors can be made using these base colors: open Intellij -> Type "Ctrl+Shift+A" on Windows or "Command+Shift+A" on Mac and type "show Color Picker". When selected, you can pick   different colors and observe their red, green and blue values to get an intuition for how this works).

1.2 Image Processing

The ubiquity of images is matched by the plethora of image manipulation programs and services. All phones with a camera also include apps that allow us to brighten, darken, blur or crop photos. Instagram has''filters" that convert a picture into something more interesting. Programs on traditional computers range from very simple photo manipulators to sophisticated Photoshop-like applications. The technical field of image processing itself is deeply rooted in math and signal processing theory. But the basics of image representation and manipulation are quite simple to understand. All image processing applications boil down to manipulating individual pixel colors. Some operations require computing properties or statistics on an image. For example, to increase the contrast in an image, one has to ensure that the intensities of pixels span a wider range (and hence can be thought of as an operation on the histogram of an image).

1.3 Sample Image Application

If you have not worked with image processing applications before, we recommend

Gimp(http://www.gimp.org). Gimp is a free, open-source powerful image processing application. If you have access to Photoshop then that will be enough as well. We encourage you to find and tryout the  image processing operations that we will introduce in these assignments using these applications, to understand them better.

2 A sampling of image processing operations

2.1 Example Image Processing: Visualizing components

One of the easiest ways to analyze a color image is to separately inspect the components (channels) of  its pixels. This provides insight into the overall color balance of the image, or which components seem to store more information than others. This information can be used to compress the image better (by discarding data from or using fewer bits for its less-important channels) or make image processing faster (by only working on some channels).

The easiest way to visualize the channel of an image is to create an image, where the red, green and blue values for a pixel are all set to the value of a particular channel. This creates a greyscale visualization of a channel. For example, if a pixel in the

内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值