Computational Optimization #2SPSS

Java Python Computational Optimization

Assignment #2

Problem 1

a)   Show that the number of nodes in a tree where we represent all possible combinations of m 0-1 binary variables is

2m+1 - 1

b)  If a complete enumeration of all the nodes in the tree were required, by what factor would this enumeration increase with respect to the direct enumeration of all 0-1 combinations.

Problem 2

Given is the integer programming problem

max y1 + 1.2y2

s.t. y1 + y2  ≤ 1

0.8y1 + 1.1y2  ≤ 1

y1, y2 ∈ {0, 1}

a)   Plot the contours of the objective and the feasible region for the case when the binary variables are relaxed as continuous variables y1, y2  ∈ [0, 1].

b)  Determine from inspection the solution of the relaxed problem (i.e. finding the solution by inspecting each feasible solution in the plot).

c)   Enumerate the four 0-1 combinations in your plot (for all possible values of y1, y2) to find the optimal solution.

d)  Solve the above problem with the branch and bound method by enumerating the nodes in the tree and solving the LP subproblems with GAMS/Pyomo.

Problem 3

A company is considering to produce a chemical C which can be manufactured with either process II or process III, both of which use as raw material chemical B.  B can be purchased from another company or else manufactured with process I which uses A as a raw material. Given the specifications below, formulate an MILP model and solve it with GAMS/Pyomo to determine:

a)    Which process to build (II and III are exclusive)?

b)    How to obtain chemical B?

c)    How much should be produced of product C? The objective is to maximize profit.

Consider the two following cases:

1.    Maximum demand of C is 10 tons/hr with a selling price of $1800/ton.

2.    Maximum demand of C is 15 tons/hr; the selling price for the first 10 ton/hr is $1800/ton, and $1500/ton for the excess.

Data:

Investment and Operating Costs

Fixed ($/hr)                                Variable($/ton raw mat)

Process I

1000

250

Process II

1500

400

Process III

2000

550

Prices:    A:     $500/ton

B:     $950/ton

Conversions:

Process  I 90% of A to B

Process II 82% of B to C

Process III 95% of B to C

Maxim Computational Optimization Assignment #2SPSS um supply of A:  16 tons/hr

NOTE:   You may want to scale your cost coefficients (e.g. divide them by  100). Please avoid using any nonlinear term in the model formulation, because the model should an MILP. Please make sure to add ‘option ptcr = 0’ in your GAMS code. Please submit your source code file as well.

Problem 4

[Note: This is a bonus problem and not required – those students may work on it to earn an extra credit of at most 2 points that will be used to offset any possible loss of points from other problems, which are worth 10 points in total.]

Given are the following two optimization problems:

min z1  = f (x)

s.t. g (x ) ≤ 0

P1: h (x) ≤ 0

x Rn

min z2  = f (x)

P2: s.t. g (x) + h(x) ≤ 0

x Rn

where g(x) and h(x) are continuous and differentiable functions.

a)   Show that the optimal objective function values of the above problem obey the following inequality: (z ) ≥ (z )

b)  Does the above inequality rely on the assumption that the functions g(x) and h(x) are convex?

Problem 5

Prove that y2  + y3 + 2y4 ≤ 6   is a valid Gomory cut for the following feasible region.

X = {y Z4+ 1 + 5y2  + 9y3 +12y4 ≤ 34} .

Problem 6

The nonlinear term, Z = x . y, where x, y ∈ {0,1}  and Z ∈ ℝ . Please reformulate this mixed- integer nonlinear equation into a set of mixed-integer linear inequalities with exactly the same feasible region.

Problem 7

[Note: This is a bonus problem and not required – those students may work on it to earn an extra credit of at most 2 points that will be used to offset any possible loss of points from other problems, which are worth 10 points in total.]

Consider the following optimization problem:

min  |x1| + 2|x2| − |x3|

st x + x x ≤ 10

x1 − 3x2  + 2x3  = 12

− 50 ≤ x1  ≤ 20

(a) Please reformulate it into  a mixed-integer linear program,  and  solve this  MILP with GAMS/Pyomo.

(b) Please solve the original problem with absolute value terms with a deterministic global optimization solver BARON or Couenne, and compare the resulting optimal solution with the one from (a)         

《计算流体动力学导论2》是一本关于计算流体力学的入门教程,该书是第二版。计算流体力学是研究流体力学问题的数值模拟方法,它将流体力学方程组转化为离散的数学模型,并利用计算机进行求解。 该书主要内容包括流体力学基础知识、数值解方法、网格生成技术和数据可视化等方面。首先介绍了一些流体力学基本概念,例如流动的守恒方程、流体的物性参数等,为后续的学习打下了基础。 接着详细介绍了求解流体力学问题的数值方法,包括有限差分法、有限体积法和有限元法等。这些方法可以将流体力学方程转化为线性方程组进行求解,并给出了其应用的条件和适用范围。 此外,书中还介绍了网格生成技术,在数值模拟中网格的质量和分辨率对结果的准确性有很大影响。该章节详细介绍了一些常用的网格生成方法,例如结构化网格和非结构化网格,并讨论了不同方法的优缺点。 最后一部分是数据可视化,这是对计算结果进行后处理的重要环节。通过可视化技术,我们可以直观地观察流体运动和各个物理量的分布情况,进一步分析流体现象。 《计算流体动力学导论2》是一本系统介绍计算流体力学基本理论和方法的教程书籍,适用于从事流体力学数值模拟研究的学生和科研人员。它通过清晰的讲解和实例分析,帮助读者理解和应用计算流体力学方法,从而更好地解决流体力学问题。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值