Codeforces Round 1054 A. Be Positive (2149)

本题地址

https://codeforces.com/contest/2149/problem/A

/*
A. Be positive

Given an array a of n elements,where each element is equal to -1,0,1.
In one operation, you can choose an index i and increase a by 1(this is,assign a:=a+1).
Operations can be performed any number of times,choosing any indices.

The goal is to make the product of all elements in the array strictly positive 
with the minimum number of operations,that is a1*a2*a3...an>0.

Find the mininum of operations.It is guaranteed that this is always possible.

Input
Each test consists of several test cases.
The first line contains one integert (1<t<10*4) -- the number of test cases. 
The description of the test cases follows.

The first line of each test case contains one integer n (1 <n < 8) -- the length of the array a.

The second line contains n integers a1,a2,...,an.
where -1<=ai<=1 - the elements of the array a.

Output
For each test case, output one integer - the minimum number of operations required 
to make the product(>0) of the elements in the array strictly positive.

Input
3
3
-1 0 1
4
-1 -1 0 1
5
-1 -1 -1 0 0
Output
3
1
4

Note
In the first test case: from [-1,0,1], you can obtain [1,1,1] in 3 operations.

In the second test case: it is enough to perform 0->1 (1 operation).
In the resulting array a=[-1,-1,1,1],the product of all elements is 1.

当负数是偶数个,那么a的所有元素的乘积,才能>0

In the third test case: turning two zeros into ones (2 operations),
and one -1 into 1 (another 2 operations),for a total of 4.

根据题意
the goal: the product(or mutiplicatin) of all element is strictly positive.(the product>0)

目标是获得所有元素的之乘积,这个乘积(the product)必须是严格正数,即>0

例如:-1,1,-1,1 相乘,得到1,必须>0(strictly positive)

1) if negative number of cout is odd(%2!=0),that one need to 2 operation (-1+1+1=1>0)

所以,当-1的个数是奇数个,总乘积就是负数,就需要使其变成 >0 的数据,那么需操作2次,每次+1,才能>0

2) if zero,is not strictly positive,need to 1 operation(0+1=1)

如果是0,必须变为1,才能导致the product乘积>0,所以这里需要操作+1一步。

解题思路:

第一步:循环输入变量:如果是0,那么就操作+1,如果是-1,那么就统计负数有多少个

第二步:多少个负数,如果奇数,就要+1+1,才能>0,如果不是,不用管。

最后累计上面的操作数即可。

本题关键理解:

The goal is to make the product of all elements in the array strictly positive 
with the minimum number of operations

所有元素的乘积,是严格正数>0,这里需要百度获得这个知识。

/*
Be positive
 
Given an array a of n elements,where each element is equal to -1,0,1.
In one operation, you can choose an index i and increase a by 1(this is,assign a:=a+1).
Operations can be performed any number of times,choosing any indices.
 
The goal is to make the product of all elements in the array strictly positive 
with the minimum number of operations,that is a1*a2*a3...an>0.
 
Find the mininum of operations.It is guaranteed that this is always possible.
 
Input
Each test consists of several test cases.
The first line contains one integert (1<t<10*4) -- the number of test cases. 
The description of the test cases follows.
 
The first line of each test case contains one integer n (1 <n < 8) -- the length of the array a.
 
The second line contains n integers a1,a2,...,an.
where -1<=ai<=1 - the elements of the array a.
 
Output
For each test case, output one integer - the minimum number of operations required 
to make the product(>0) of the elements in the array strictly positive.
 
Input
3
3
-1 0 1
4
-1 -1 0 1
5
-1 -1 -1 0 0
Output
3
1
4
 
Note
In the first test case: from [-1,0,1], you can obtain [1,1,1] in 3 operations.
 
In the second test case: it is enough to perform 0->1 (1 operation).
In the resulting array a=[-1,-1,1,1],the product of all elements is 1.
 
In the third test case: turning two zeros into ones (2 operations),
and one -1 into 1 (another 2 operations),for a total of 4.
*/
 
 
#include <iostream>
using namespace std;
 
// summary:
//the goal: the product(or mutiplicatin) of all element is strictly positive.(the product>0)
 
// 1) if negative number of cout is odd(%2!=0),that one need to 2 operation (-1+1+1=1>0)
 
// 2) if zero,is not strictly positive,need to 1 operation(0+1=1)
 
void make_strictly_positive_of_the_product()
{
	int operation = 0;
	int negative_cout = 0;
	int n = 0;
	cin >> n;
	int v1 = 0;
	for (int i = 0; i < n; i++)
	{
		cin >> v1;
		if (v1 == 0)
		{
			operation++;
		}
		if (v1 < 0)
		{
			negative_cout++;
		}
	}
	if (negative_cout % 2 != 0)
	{
		operation++; // to 0
		operation++; // to 1
	}
	cout<< operation << endl;
	operation = 0;
	negative_cout = 0;
}
 
int main()
{
	int t;
	cin >> t;
	while (t--)
	{
		make_strictly_positive_of_the_product();
	}
	return 0;
}

验证OK!

### Codeforces Round 927 Div. 3 比赛详情 Codeforces是一个面向全球程序员的比赛平台,定期举办不同级别的编程竞赛。Div. 3系列比赛专为评级较低的选手设计,旨在提供更简单的问题让新手能够参与并提升技能[^1]。 #### 参赛规则概述 这类赛事通常允许单人参加,在规定时间内解决尽可能多的问题来获得分数。评分机制基于解决问题的速度以及提交答案的成功率。比赛中可能会有预测试案例用于即时反馈,而最终得分取决于系统测试的结果。此外,还存在反作弊措施以确保公平竞争环境。 ### 题目解析:Moving Platforms (G) 在这道题中,给定一系列移动平台的位置和速度向量,询问某时刻这些平台是否会形成一条连续路径使得可以从最左端到达最右端。此问题涉及到几何学中的线段交集判断和平面直角坐标系内的相对运动分析。 为了处理这个问题,可以采用如下方法: - **输入数据结构化**:读取所有平台的数据,并将其存储在一个合适的数据结构里以便后续操作。 - **时间轴离散化**:考虑到浮点数精度误差可能导致计算错误,应该把整个过程划分成若干个小的时间间隔来进行模拟仿真。 - **碰撞检测算法实现**:编写函数用来判定任意两个矩形之间是否存在重叠区域;当发现新的连接关系时更新可达性矩阵。 - **连通分量查找技术应用**:利用图论知识快速求解当前状态下哪些节点属于同一个集合内——即能否通过其他成员间接相连。 最后输出结果前记得考虑边界条件! ```cpp // 假设已经定义好了必要的类和辅助功能... bool canReachEnd(vector<Platform>& platforms, double endTime){ // 初始化工作... for(double currentTime = startTime; currentTime <= endTime ;currentTime += deltaT){ updatePositions(platforms, currentTime); buildAdjacencyMatrix(platforms); if(isConnected(startNode,endNode)){ return true; } } return false; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值