行人摔倒检测 — 基于 OpenVINO C# API 部署PP-Human
随着人口老龄化问题的加重,独居老人、空巢老人数量在不断上升,因此如何保障独居老人、空巢老人健康生活和人身安全至关重要。而对于独居老人、空巢老人,如果出现摔倒等情况而不会及时发现,将会对其健康安全造成重大影响。本项目主要研究为开发一套摔倒自动识别报警平台,使用视频监控其采集多路视频流数据,使用行人检测算法、关键点检测算法以及摔倒检测算法实现对行人摔倒自动识别,并根据检测情况,对相关人员发送警报,实现对老人的及时看护。该装置可以布置在养老院等场所,通过算法自动判别,可以大大降低人力成本以及保护老人的隐私。该项目应用场景不知可以用到空巢老人,还可以用到家庭中的孕妇儿童、幼儿园等场景,实现对儿童的摔倒检测。
项目中采用OpenVINO部署行人检测算法、关键点检测算法以及摔倒检测算法实现对行人摔倒自动识别算法,并在AIxBoard 开发板上使用 OpenVINO C# API 结合应用场景部署多模型。
项目中所使用的代码全部在GitHub上开源,项目链接为:PP-Human_Fall_Detection
项目首发网址:行人摔倒检测 - 在英特尔开发套件上基于 OpenVINO™ C# API 部署 PP-Human | 开发者实战
项目内容角度,在本文中我们将重点讲述项目中所使用的开发套件以及模型获取方式,如何使用大家可以关注下一篇文章。
1. 英特尔开发套件
1.1 OpenVINO
英特尔发行版 OpenVINO™工具套件基于oneAPI 而开发,可以加快高性能计算机视觉和深度学习视觉应用开发速度工具套件,适用于从边缘到云的各种英特尔平台上,帮助用户更快地将更准确的真实世界结果部署到生产系统中。通过简化的开发工作流程, OpenVINO™可赋能开发者在现实世界中部署高性能应用程序和算法。

OpenVINO™ 2023.1于2023年9月18日发布,该工具包带来了挖掘生成人工智能全部潜力的新功能。生成人工智能的覆盖范围得到了扩展,通过PyTorch*等框架增强了体验,您可以在其中自动导入和转换模型。大型语言模型(LLM)在运行时性能和内存优化方面得到了提升。聊天机器人、代码生成等的模型已启用。OpenVINO更便携,性能更高,可以在任何需要的地方运行:在边缘、云中或本地。
1.2 AIxBoard 介绍
产品定位
英特尔开发套件 AIxBoard(爱克斯板)是英特尔开发套件官方序列中的一员,专为入门级人工智能应用和边缘智能设备而设计。爱克斯板能完美胜人工智能学习、开发、实训、应用等不同应用场景。该套件预装了英特尔OpenVINO™工具套件、模型仓库和演示案例,便于您轻松快捷地开始应用开发。
套件主要接口与Jetson Nano载板兼容,GPIO与树莓派兼容,能够最大限度地复用成熟的生态资源。这使得套件能够作为边缘计算引擎,为人工智能产品验证和开发提供强大支持;同时,也可以作为域控核心,为机器人产品开发提供技术支撑。
使用AIxBoard(爱克斯板)开发套件,您将能够在短时间内构建出一个出色的人工智能应用应用程序。无论是用于科研、教育还是商业领域,爱克斯板都能为您提供良好的支持。借助 OpenVINO™ 工具套件,CPU、iGPU 都具备强劲的 AI 推理能力,支持在图像分类、目标检测、分割和语音处理等应用中并行运行多个神经网络。
产品参数
| 主控 | 英特尔赛扬N5105 2.0-2.9GHz (formerly Jasper Lake) |
|---|---|
| 内存 | 板载LPDDR4x 2933MHz, 4GB/6GB/8GB |
| 存储 | 板载 64GB eMMC存储 |
| 存储扩展 | 1个M.2 Key-M 2242扩展槽, 支持SATA&NVME协议 |
| BIOS | AMI UEFI BIOS |
| 系统支持 | Ubuntu20.04 LTS |
| Winodws 10/11 |
AI推理单元
借助OpenVINO工具,能够实现CPU+iGPU异构计算推理,IGPU算力约为0.6TOPS
| CPU | INT8/FP16/FP32 |
|---|---|
| iGPU | INT8/FP16 0.6TOPS |
| GNA | 高斯及神经加速器 |

本文介绍了如何使用OpenVINO和PaddleDetection中的PP-Human模型进行行人摔倒检测,包括模型获取、PaddlePaddle到ONNX和IR格式的转换,以及在AIxBoard上部署的过程。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



