Temporary Tables and Table Variable

本文介绍了如何使用SQL Server中的临时表和表变量来处理数据,包括创建、填充数据及返回结果的方法。临时表和表变量各有优缺点,可根据数据量大小选择合适的方式。

 

Temporary Tables

By Bill Graziano

 


 

Sophie writes "Can you use a Stored Procedure to open a table and copy data to a sort of virtual table (or a records set) so that you can change the values with and not affect the actual data in the actual table. And then return the results of the virtual table? Thanks!" This article covers temporary tables and tables variables and is updated for SQL Server 2005.

I love questions like this. This question is just a perfect lead in to discuss temporary tables. Here I am struggling to find a topic to write about and I get this wonderful question. Thank you very much Sophie.

Temporary Tables

The simple answer is yes you can. Let look at a simple CREATE TABLE statement:

CREATE TABLE #Yaks (
YakID int,
YakName char(30) )

You'll notice I prefixed the table with a pound sign (#). This tells SQL Server that this table is a local temporary table. This table is only visible to this session of SQL Server. When I close this session, the table will be automatically dropped. You can treat this table just like any other table with a few exceptions. The only real major one is that you can't have foreign key constraints on a temporary table. The others are covered in Books Online.

Temporary tables are created in tempdb. If you run this query:

CREATE TABLE #Yaks (
YakID int,
YakName char(30) )

select name
from tempdb..sysobjects 
where name like '#yak%'

drop table #yaks

You'll get something like this:

name
------------------------------------------------------------------------------------ 
#Yaks_________________________ . . . ___________________________________00000000001D

(1 row(s) affected)

except that I took about fifty underscores out to make it readable. SQL Server stores the object with a some type of unique number appended on the end of the name. It does all this for you automatically. You just have to refer to #Yaks in your code.

If two different users both create a #Yaks table each will have their own copy of it. The exact same code will run properly on both connections. Any temporary table created inside a stored procedure is automatically dropped when the stored procedure finishes executing. If stored procedure A creates a temporary table and calls stored procedure B, then B will be able to use the temporary table that A created. It's generally considered good coding practice to explicitly drop every temporary table you create.  If you are running scripts through SQL Server Management Studio or Query Analyzer the temporary tables are kept until you explicitly drop them or until you close the session.

Now let's get back to your question. The best way to use a temporary table is to create it and then fill it with data. This goes something like this:

CREATE TABLE #TibetanYaks(
YakID int,
YakName char(30) )

INSERT INTO #TibetanYaks (YakID, YakName)
SELECT 	YakID, YakName
FROM 	dbo.Yaks
WHERE 	YakType = 'Tibetan'

-- Do some stuff with the table

drop table #TibetanYaks

Obviously, this DBA knows their yaks as they're selecting the famed Tibetan yaks, the Cadillac of yaks. Temporary tables are usually pretty quick. Since you are creating and deleting them on the fly, they are usually only cached in memory.

Table Variables

If you are using SQL Server 2000 or higher, you can take advantage of the new TABLE variable type. These are similar to temporary tables except with more flexibility and they always stay in memory.  The code above using a table variable might look like this:

DECLARE @TibetanYaks TABLE (
YakID int,
YakName char(30) )

INSERT INTO @TibetanYaks (YakID, YakName)
SELECT 	YakID, YakName
FROM 	dbo.Yaks
WHERE 	YakType = 'Tibetan'

-- Do some stuff with the table 

Table variables don't need to be dropped when you are done with them.

Which to Use

  • If you have less than 100 rows generally use a table variable.  Otherwise use  a temporary table.  This is because SQL Server won't create statistics on table variables.
  • If you need to create indexes on it then you must use a temporary table.
  • When using temporary tables always create them and create any indexes and then use them.  This will help reduce recompilations.  The impact of this is reduced starting in SQL Server 2005 but it's still a good idea.

Answering the Question

And all this brings us back to your question.  The final answer to your question might look something like this:

DECLARE @TibetanYaks TABLE (
YakID int,
YakName char(30) )

INSERT INTO @TibetanYaks (YakID, YakName)
SELECT 	YakID, YakName
FROM 	dbo.Yaks
WHERE 	YakType = 'Tibetan'

UPDATE 	@TibetanYaks
SET 	YakName = UPPER(YakName)

SELECT *
FROM @TibetanYaks

Global Temporary Tables

You can also create global temporary tables. These are named with two pound signs. For example, ##YakHerders is a global temporary table. Global temporary tables are visible to all SQL Server connections. When you create one of these, all the users can see it.  These are rarely used in SQL Server.

Summary

That shows you an example of creating a temporary table, modifying it, and returning the values to the calling program. I hope this gives you what you were looking for.

# Other default tuning values # MySQL Server Instance Configuration File # ---------------------------------------------------------------------- # Generated by the MySQL Server Instance Configuration Wizard # # # Installation Instructions # ---------------------------------------------------------------------- # # On Linux you can copy this file to /etc/my.cnf to set global options, # mysql-data-dir/my.cnf to set server-specific options # (@localstatedir@ for this installation) or to # ~/.my.cnf to set user-specific options. # # On Windows, when MySQL has been installed using MySQL Installer you # should keep this file in the ProgramData directory of your server # (e.g. C:\ProgramData\MySQL\MySQL Server X.Y). To make sure the server # reads the config file, use the startup option "--defaults-file". # # To run the server from the command line, execute this in a # command line shell, e.g. # mysqld --defaults-file="C:\Program Files\MySQL\MySQL Server X.Y\my.ini" # # To install the server as a Windows service manually, execute this in a # command line shell, e.g. # mysqld --install MySQLXY --defaults-file="C:\Program Files\MySQL\MySQL Server X.Y\my.ini" # # And then execute this in a command line shell to start the server, e.g. # net start MySQLXY # # # Guidelines for editing this file # ---------------------------------------------------------------------- # # In this file, you can use all long options that the program supports. # If you want to know the options a program supports, start the program # with the "--help" option. # # More detailed information about the individual options can also be # found in the manual. # # For advice on how to change settings please see # https://dev.mysql.com/doc/refman/8.0/en/server-configuration-defaults.html # # # CLIENT SECTION # ---------------------------------------------------------------------- # # The following options will be read by MySQL client applications. # Note that only client applications shipped by MySQL are guaranteed # to read this section. If you want your own MySQL client program to # honor these values, you need to specify it as an option during the # MySQL client library initialization. # [client] # pipe= # socket=MYSQL port=3306 [mysql] no-beep # default-character-set= # SERVER SECTION # ---------------------------------------------------------------------- # # The following options will be read by the MySQL Server. Make sure that # you have installed the server correctly (see above) so it reads this # file. # [mysqld] port = 3306 bind-address = 0.0.0.0 # The next three options are mutually exclusive to SERVER_PORT below. # skip-networking # enable-named-pipe # shared-memory # shared-memory-base-name=MYSQL # The Pipe the MySQL Server will use. # socket=MYSQL # The access control granted to clients on the named pipe created by the MySQL Server. # named-pipe-full-access-group= # The TCP/IP Port the MySQL Server will listen on port=3306 # Path to installation directory. All paths are usually resolved relative to this. # basedir="D:/mysql" # Path to the database root datadir=D:/mysql\Data # The default character set that will be used when a new schema or table is # created and no character set is defined # character-set-server= # The default storage engine that will be used when create new tables when default-storage-engine=INNODB # The current server SQL mode, which can be set dynamically. # Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This # makes it easier to use MySQL in different environments and to use MySQL together with other # database servers. sql-mode="ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_ENGINE_SUBSTITUTION" # General and Slow logging. log-output=FILE general-log=0 general_log_file="WIN-20240617SLP.log" slow-query-log=1 slow_query_log_file="WIN-20240617SLP-slow.log" long_query_time=10 # Error Logging. log-error="WIN-20240617SLP.err" # ***** Group Replication Related ***** # Specifies the base name to use for binary log files. With binary logging # enabled, the server logs all statements that change data to the binary # log, which is used for backup and replication. log-bin="WIN-20240617SLP-bin" # ***** Group Replication Related ***** # Specifies the server ID. For servers that are used in a replication topology, # you must specify a unique server ID for each replication server, in the # range from 1 to 2^32 − 1. "Unique" means that each ID must be different # from every other ID in use by any other source or replica. server-id=1 # Indicates how table and database names are stored on disk and used in MySQL. # Value 0 = Table and database names are stored on disk using the lettercase specified in the CREATE # TABLE or CREATE DATABASE statement. Name comparisons are case-sensitive. You should not # set this variable to 0 if you are running MySQL on a system that has case-insensitive file # names (such as Windows or macOS). If you force this variable to 0 with # --lower-case-table-names=0 on a case-insensitive file system and access MyISAM tablenames # using different lettercases, index corruption may result. # Value 1 = Table names are stored in lowercase on disk and name comparisons are not case-sensitive. # MySQL converts all table names to lowercase on storage and lookup. This behavior also applies # to database names and table aliases. # Value 2 = Table and database names are stored on disk using the lettercase specified in the CREATE TABLE # or CREATE DATABASE statement, but MySQL converts them to lowercase on lookup. Name comparisons # are not case-sensitive. This works only on file systems that are not case-sensitive! InnoDB # table names and view names are stored in lowercase, as for lower_case_table_names=1. lower_case_table_names=1 # This variable is used to limit the effect of data import and export operations, such as # those performed by the LOAD DATA and SELECT ... INTO OUTFILE statements and the # LOAD_FILE() function. These operations are permitted only to users who have the FILE privilege. secure-file-priv="D:/mysql/Uploads" # The maximum amount of concurrent sessions the MySQL server will # allow. One of these connections will be reserved for a user with # SUPER privileges to allow the administrator to login even if the # connection limit has been reached. max_connections=151 # The number of open tables for all threads. Increasing this value increases the number # of file descriptors that mysqld requires. table_open_cache=4000 # Defines the maximum amount of memory that can be occupied by the TempTable # storage engine before it starts storing data on disk. temptable_max_ram=1G # Defines the maximum size of internal in-memory temporary tables created # by the MEMORY storage engine and, as of MySQL 8.0.28, the TempTable storage # engine. If an internal in-memory temporary table exceeds this size, it is # automatically converted to an on-disk internal temporary table. tmp_table_size=128M # The storage engine for in-memory internal temporary tables (see Section 8.4.4, "Internal # Temporary Table Use in MySQL"). Permitted values are TempTable (the default) and MEMORY. internal_tmp_mem_storage_engine=TempTable #*** MyISAM Specific options # The maximum size of the temporary file that MySQL is permitted to use while re-creating a # MyISAM index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA). If the file size would be # larger than this value, the index is created using the key cache instead, which is slower. # The value is given in bytes. myisam_max_sort_file_size=2146435072 # The size of the buffer that is allocated when sorting MyISAM indexes during a REPAIR TABLE # or when creating indexes with CREATE INDEX or ALTER TABLE. myisam_sort_buffer_size=245M # Size of the Key Buffer, used to cache index blocks for MyISAM tables. # Do not set it larger than 30% of your available memory, as some memory # is also required by the OS to cache rows. Even if you're not using # MyISAM tables, you should still set it to 8-64M as it will also be # used for internal temporary disk tables. key_buffer_size=8M # Each thread that does a sequential scan for a MyISAM table allocates a buffer # of this size (in bytes) for each table it scans. If you do many sequential # scans, you might want to increase this value, which defaults to 131072. The # value of this variable should be a multiple of 4KB. If it is set to a value # that is not a multiple of 4KB, its value is rounded down to the nearest multiple # of 4KB. read_buffer_size=128K # This variable is used for reads from MyISAM tables, and, for any storage engine, # for Multi-Range Read optimization. read_rnd_buffer_size=256K #*** INNODB Specific options *** # innodb_data_home_dir= # Use this option if you have a MySQL server with InnoDB support enabled # but you do not plan to use it. This will save memory and disk space # and speed up some things. # skip-innodb # If set to 1, InnoDB will flush (fsync) the transaction logs to the # disk at each commit, which offers full ACID behavior. If you are # willing to compromise this safety, and you are running small # transactions, you may set this to 0 or 2 to reduce disk I/O to the # logs. Value 0 means that the log is only written to the log file and # the log file flushed to disk approximately once per second. Value 2 # means the log is written to the log file at each commit, but the log # file is only flushed to disk approximately once per second. innodb_flush_log_at_trx_commit=1 # The size in bytes of the buffer that InnoDB uses to write to the log files on # disk. The default value changed from 8MB to 16MB with the introduction of 32KB # and 64KB innodb_page_size values. A large log buffer enables large transactions # to run without the need to write the log to disk before the transactions commit. # Thus, if you have transactions that update, insert, or delete many rows, making # the log buffer larger saves disk I/O. innodb_log_buffer_size=16M # The size in bytes of the buffer pool, the memory area where InnoDB caches table # and index data. The default value is 134217728 bytes (128MB). The maximum value # depends on the CPU architecture; the maximum is 4294967295 (232-1) on 32-bit systems # and 18446744073709551615 (264-1) on 64-bit systems. On 32-bit systems, the CPU # architecture and operating system may impose a lower practical maximum size than the # stated maximum. When the size of the buffer pool is greater than 1GB, setting # innodb_buffer_pool_instances to a value greater than 1 can improve the scalability on # a busy server. innodb_buffer_pool_size=128M # Defines the amount of disk space occupied by redo log files. This variable supersedes the # innodb_log_files_in_group and innodb_log_file_size variables. innodb_redo_log_capacity=100M # Defines the maximum number of threads permitted inside of InnoDB. A value # of 0 (the default) is interpreted as infinite concurrency (no limit). This # variable is intended for performance tuning on high concurrency systems. # InnoDB tries to keep the number of threads inside InnoDB less than or equal to # the innodb_thread_concurrency limit. Once the limit is reached, additional threads # are placed into a "First In, First Out" (FIFO) queue for waiting threads. Threads # waiting for locks are not counted in the number of concurrently executing threads. innodb_thread_concurrency=25 # The increment size (in MB) for extending the size of an auto-extend InnoDB system tablespace file when it becomes full. innodb_autoextend_increment=64 # The number of regions that the InnoDB buffer pool is divided into. # For systems with buffer pools in the multi-gigabyte range, dividing the buffer pool into separate instances can improve concurrency, # by reducing contention as different threads read and write to cached pages. innodb_buffer_pool_instances=8 # Determines the number of threads that can enter InnoDB concurrently. innodb_concurrency_tickets=5000 # Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after its first access before # it can be moved to the new sublist. innodb_old_blocks_time=1000 # When this variable is enabled, InnoDB updates statistics during metadata statements. innodb_stats_on_metadata=0 # When innodb_file_per_table is enabled (the default in 5.6.6 and higher), InnoDB stores the data and indexes for each newly created table # in a separate .ibd file, rather than in the system tablespace. innodb_file_per_table=1 # Use the following list of values: 0 for crc32, 1 for strict_crc32, 2 for innodb, 3 for strict_innodb, 4 for none, 5 for strict_none. innodb_checksum_algorithm=0 # If this is set to a nonzero value, all tables are closed every flush_time seconds to free up resources and # synchronize unflushed data to disk. # This option is best used only on systems with minimal resources. flush_time=0 # The minimum size of the buffer that is used for plain index scans, range index scans, and joins that do not use # indexes and thus perform full table scans. join_buffer_size=256K # The maximum size of one packet or any generated or intermediate string, or any parameter sent by the # mysql_stmt_send_long_data() C API function. max_allowed_packet=64M # If more than this many successive connection requests from a host are interrupted without a successful connection, # the server blocks that host from performing further connections. max_connect_errors=100 # The number of file descriptors available to mysqld from the operating system # Try increasing the value of this option if mysqld gives the error "Too many open files". open_files_limit=8161 # If you see many sort_merge_passes per second in SHOW GLOBAL STATUS output, you can consider increasing the # sort_buffer_size value to speed up ORDER BY or GROUP BY operations that cannot be improved with query optimization # or improved indexing. sort_buffer_size=256K # Specify the maximum size of a row-based binary log event, in bytes. # Rows are grouped into events smaller than this size if possible. The value should be a multiple of 256. binlog_row_event_max_size=8K # If the value of this variable is greater than 0, a replica synchronizes its master.info file to disk. # (using fdatasync()) after every sync_source_info events. sync_source_info=10000 # If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk. # (using fdatasync()) after every sync_relay_log writes to the relay log. sync_relay_log=10000 # Load mysql plugins at start."plugin_x ; plugin_y". # plugin_load # The TCP/IP Port the MySQL Server X Protocol will listen on. 这就是配置文件内容
10-03
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值