T-state

T-state

1. Overview

 

CPU在C0状态下有两种手段降低功耗的方法,其一是之前介绍过的P-state,另一个就是T-state。T-sate全称就是Processor Throttling States,它为OSPM提供了一种通过降低Processor Performance进而降低系统负载和温度的能力,听上去可能和P-state很像,其实是有区别的,P-state通过调整CPU VID电压进而影响CPU的工作频率的方式调整系统系能,而T-state则是通过调整单位时间内CPU Clock On /(Clock On + Clock Off)的时间(也即Clock On工作占整个CPU工作时间的占空比)的方式 ,影响系统的功耗和温度。
 

2. T-state Control

 

1)        MSR Based Control

 

BIOS可以通过IA32_CLOCK_MODULATION去Enable/Disable clock modulation,而且也可以通过该register的bit0:3 设置CPU Clock Duty Cycle。当FFH在_PTC中被使用时,OSPM就会使用MSR IA32_CLOCK_MODULATION做T-state的转换。
 

2)        I/O Based Control

 

除了基于MSR的Clock Modulation,新的CPU也支持IO emulation 的Clock Modulation如果系统没有宣告 _PTC,则OSPM将会使用SystemIO 的方式支持Clock Modulation,OSPM将会通过PROC_CNT register bit4:0做T-state的转换。
 

3)        ACPI Structure For P-state

l  _PTC

 

Processor Throttling Control,该method用于告知OSPM使SystemIo还是MSR的方式调整 Clock Modulation的方式。它的格式如下所示:
 

Name (_PTC, Package()

{

    ResourceTemplate(){Throttling_Control_Register},    //Generic Register Descriptor

    ResourceTemplate(){Throttling_Status_Register}   //Generic Register Descriptor

}) // End of _PTC

 

下述是一个sample code:
 

           //

              // T-State Control/Status interface

              //

              Method(_PTC, 0)

              {

                     //

                     // IF OSPM is capable of direct access to MSR

                     //    Report MSR interface

                     // ELSE

                     //    Report I/O interface

                     //

                     //  PDCx[2] = OSPM is capable of direct access to On

                     //            Demand throttling MSR

                     //

                     If(And(PDC0, 0x0004)) {

                            Return(Package() {

                                   ResourceTemplate(){Register(FFixedHW, 0, 0, 0)},

                                   ResourceTemplate(){Register(FFixedHW, 0, 0, 0)}

                            })

                     }

                     Return(Package() {

                            ResourceTemplate(){Register(SystemIO, 4, 1, 0x410)},

                            ResourceTemplate(){Register(SystemIO, 4, 1, 0x410)}

                     })

              }            

      

l  _TSS

 

Throttling Supported States用于告知OSPM该平台所支持的所有的T-sates,格式如下所示:
Name (_TSS, Package()

{       // Field Name                      Field Type

 

    Package ()                              // Throttle State 0 Definition – T0

    { 

        FreqPercentageOfMaximum,          // DWordConst

        Power,                              // DWordConst

        TransitionLatency,                 // DWordConst

        Control,                           // DWordConst

        Status                              // DWordConst

},

……

}

       Example code 如下所示:
       Method(_TSS, 0)

       {     

Package(){100, 1000, 0, 0x00, 0},

                     Package(){ 88,  875, 0, 0x1E, 0},

                     Package(){ 75,  750, 0, 0x1C, 0},

                     Package(){ 63,  625, 0, 0x1A, 0},

                     Package(){ 50,  500, 0, 0x18, 0},

                     Package(){ 38,  375, 0, 0x16, 0},

                     Package(){ 25,  250, 0, 0x14, 0},

                     Package(){ 13,  125, 0, 0x12, 0}   

}

      

l  _TPC

 

Throttling Present Capabilities,用于动态的通知OSPM该平台所支持的T-states,0表示支持所有的T-state,1表示支持[1,n],2表示支持[2,n]依此类推。为支持动态通知OSPM,当某些条件满足时可以通过通知Processor Object 0x82的方式促使OSPM重新评估_TPC。
 

l  _TSD

 

T-state Dependency用于告知OSPM 该平台的logical processor之间的依赖信息,简单来讲就是当其中的一个核进入某一级的T-state,其它的核需要进行的动作等,下述是sample code:
 

Name (_TSD, Package()

        {

            Package(){5, 0, 0, 0xFD, 2}       // 5 entries, Revision 0, Domain 0, OSPM

Coordinate, 2 Procs

        }) // End of _TSD object

 

REFF:

1.  ACPI Spec 3.0

2.  Intel Processor vendor-Specific ACPI

 

 

That’s all!

 

Peter

 

2010/10/01

发表于 @ 2010年10月01日 20:19:00 | 评论( 0 ) | 编辑| 举报| 收藏

旧一篇:P-state | 新一篇:PIC 、APIC(IOAPIC LAPIC)


本文来自优快云博客,转载请标明出处:http://blog.youkuaiyun.com/hgf1011/archive/2010/10/01/5918049.aspx

接下来我给你一个m_fnDynamic函数的代码,你来帮我写一个初始化的代码,function [state, dx] = m_fnDynamic(state) % 在发射坐标系建立火箭的动力学模型 state.t=state.x0(1); state.x=state.x0(2); state.y=state.x0(3); state.z=state.x0(4); state.vx=state.x0(5); state.vy=state.x0(6); state.vz=state.x0(7); state.Sxyz = [state.x;state.y;state.z]; state.Vxyz = [state.vx;state.vy;state.vz]; state.Wxyz = [0;0;0]; state.phase = 1; % 质量计算 if state.phase == 1 MassRoc = state.const.mass1 - state.const.dm1 *state. t + state.const.Dmass; elseif state.phase == 2 MassRoc = state.const.mass2 +state.const.Dmass; elseif state.phase == 3 MassRoc = state.mass2 - state.const.dm2 * (state.t - state.const.TimeP1 - state.const.TimeH1) + state.const.Dmass; state.MassEndSave= MassRoc; elseif state.phase == 4 MassRoc = state.MassEndSave; elseif state.phase == 5 MassRoc = state.MassEndSave - state.dm2 * (state.t - state.const.TimeP1 - state.const.TimeP21 - state.const.TimeH1 - state.const.TimeH2); end r2d = 180/pi; state.const.wd0=36.634/r2d; state.const.A0= 167.2/r2d; state.const.Lamda0=121.21/r2d; % 发射场地心纬度 state.Phi0 = atan(tan(state.const.wd0) * (state.const.bEarth / state.const.aEarth)^2); % 发射场位置距离地心的距离 state.R0norm = state.const.aEarth * state.const.bEarth / sqrt((state.const.aEarth * sin(state.Phi0))^2 + (state.const.bEarth * cos(state.Phi0))^2); % 发射场地心矢径 state.R0 = [ -state.R0norm * sin(state.const.wd0 - state.Phi0) * cos(state.const.A0); state.R0norm * cos(state.const.wd0 - state.Phi0); state.R0norm * sin(state.const.wd0 - state.Phi0) * sin(state.const.A0) ]; % 地球自转角速度矢量 state.W = [ state.const.WEarth * cos(state.const.wd0) * cos(state.const.A0); state.const.WEarth * sin(state.const.wd0); -state.const.WEarth * cos(state.const.wd0) * sin(state.const.A0) ]; % 火箭速度矢量 state.Vxyz = [state.vx;state.vy;state.vz]; state.V = state.Vxyz; V(1)=state.vx; V(2)=state.vy; V(3)=state.vz; % 火箭速度模 state.Vnorm = norm(state.V); % 火箭相对发射场的位置矢量 state.rou =state.Sxyz; % 火箭相对地心的位置矢量 state.R = state.rou + state.R0; % 火箭相对地心的位置矢量的模 state.Rnorm = norm(state.R); % 地心临时坐标系的速度和位置矢量 state.R1 = [ cos(state.const.wd0)*cos(state.const.A0)*state.R(1) + sin(state.const.wd0)*state.R(2) - cos(state.const.wd0)*sin(state.const.A0)*state.R(3); -sin(state.const.wd0)*cos(state.const.A0)*state.R(1) + cos(state.const.wd0)*state.R(2) + sin(state.const.wd0)*sin(state.const.A0)*state.R(3); sin(state.const.A0)*state.R(1) + cos(state.const.A0)*state.R(3) ]; state.V1 = [ cos(state.const.wd0)*cos(state.const.A0)*V(1) + sin(state.const.wd0)*V(2) - cos(state.const.wd0)*sin(state.const.A0)*V(3); -sin(state.const.wd0)*cos(state.const.A0)*V(1) + cos(state.const.wd0)*V(2) + sin(state.const.wd0)*sin(state.const.A0)*V(3); sin(state.const.A0)*V(1) + cos(state.const.A0)*V(3) ]; % 经度 if state.R1(2) > 0 state.DLamda = atan(state.R1(3) / state.R1(2)); else state.DLamda = pi + atan(state.R1(3) / state.R1(2)); end state.Lamda = state.const.Lamda0 + state.DLamda; % 地心纬度 state.PhiWei = asin(dot(state.R, state.W) / (state.Rnorm * state.const.WEarth)); % 地理纬度 state.BWei = atan(tan(state.PhiWei) * (state.const.aEarth^2 / state.const.bEarth^2)); % 射程 state.range = acos(dot(state.R0, state.R) / (state.R0norm * state.Rnorm)) * 6378.0; % 地球半径 state.REarthnorm = state.const.aEarth * state.const.bEarth / sqrt((state.const.aEarth * sin(state.PhiWei))^2 + (state.const.bEarth * cos(state.PhiWei))^2); % 高度 state.height = state.Rnorm - state.REarthnorm; % 大气模型 [state.T, state.p, state.rho, state.a] = Environment(state.height); % 动压 state.Q = 0.5 * state.rho * state.Vnorm^2; % 马赫数 state.Ma = state.Vnorm / state.a; % 北天东坐标系速度 state.V_NBE = [ cos(state.PhiWei)*state.V1(1) - sin(state.PhiWei)*cos(state.DLamda)*state.V1(2) - sin(state.PhiWei)*sin(state.DLamda)*state.V1(3); sin(state.PhiWei)*state.V1(1) + cos(state.PhiWei)*cos(state.DLamda)*state.V1(2) + cos(state.PhiWei)*sin(state.DLamda)*state.V1(3); -sin(state.DLamda)*state.V1(2) + cos(state.DLamda)*state.V1(3) ]; % 当地弹道倾角 state.thetaK = atan(state.V_NBE(2) / sqrt(state.V_NBE(1)^2 + state.V_NBE(3)^2)); % 在调用 m_TransFaShe2Efix 之前添加 disp(['state.const.A0: ', num2str(state.const.A0)]); disp(['state.const.wd0: ', num2str(state.const.wd0)]); disp(['state.const.Lamda0: ', num2str(state.const.Lamda0)]); state.Rearthfix = m_TransFaShe2Efix(state.R, state.const.A0, state.const.wd0, state.const.Lamda0); % 地球固联坐标系的位置和速度 state.Rearthfix = m_TransFaShe2Efix(state.R, state.const.A0, state.const.wd0, state.const.Lamda0); state.Vearthfix = m_TransFaShe2Efix(state.V, state.const.A0, state.const.wd0, state.const.Lamda0); % 地球惯性坐标系的位置 state.RearthI = m_TransEfix2Einertia(state.Rearthfix, state.t); % 地球惯性坐标系的速度 Wearth = [0; 0; state.const.WEarth]; cross_WR = cross(Wearth, state.Rearthfix); VearthI_temp = state.Vearthfix + cross_WR; state.VearthI = m_TransEfix2Einertia(VearthI_temp, state.t); % 地球惯性坐标系速度模 state.VEInorm = norm(state.VearthI); disp(['Size of state.RearthI: ', num2str(size(state.RearthI))]); disp(['Size of state.VearthI: ', num2str(size(state.VearthI))]); disp(['Number of elements in state.RearthI: ', num2str(numel(state.RearthI))]); disp(['Number of elements in state.VearthI: ', num2str(numel(state.VearthI))]); disp(['Size of state.Vearthfix : ', num2str(size(state.Vearthfix))]); disp(['Size of VearthI_temp : ', num2str(size(VearthI_temp))]); % 轨道六根数 state.OrElement = m_PV2COE(state.RearthI, state.VearthI); % 速度角 if state.vx > 0 state.theta = atan(state.vy / state.vx); elseif state.vx < 0 state.theta = pi + atan(state.vy / state.vx); else if state.vy >= 0 state.theta = pi/2; else state.theta = -pi/2; end end state.theta = mod(state.theta, 2*pi); if state.theta > pi state.theta = state.theta - 2*pi; end if state.theta < -pi state.theta = state.theta + 2*pi; end state.sigma = -asin(state.vz / state.Vnorm); state.upsilon = 0.0; % 程序角 state.PhiT = m_fnProAngle(state); state.PsiT = 0.0; % state.m_fnProAngle1(obj.t); state.GammaT = 0.0; % 姿态角 state.phi = state.PhiT - state.W(3) * state.t; if state.phase == 2 && state.t > state.const.time_CH1 && state.t <= state.const.time_CH2 state.psi = state.beta + state.sigma; else state.psi = state.PsiT - state.W(2) * state.t * cos(state.phi) + state.W(1) * state.t * sin(state.phi); end state.gamma = state.GammaT - state.W(2) * state.t * sin(state.phi) - state.W(1) * state.t * cos(state.phi); % 攻角、侧滑角 if state.phase== 2 % 一级程序角 if state.t <= state.const.time_CH1 || abs(state.t - state.const.time_CH1) < 1e-5 state.beta = asin(cos(state.theta - state.phi) * cos(state.sigma) * sin(state.psi) * cos(state.gamma) - ... sin(state.theta - state.phi) * cos(state.sigma) * sin(state.gamma) - sin(state.sigma) * cos(state.psi) * cos(state.gamma)); elseif state.t > state.const.time_CH1 && state.t <= state.const.time_CH2 % 梯形变化 maxBeta = -state.const.beta_v * state.const.time_xl; % 最大角度值 if state.t <= state.const.time_CH1 + state.const.time_xl % 上升段: 从0线性增加到maxBeta state.beta = state.const.beta_v * (state.t - state.const.time_CH1); elseif state.t >= state.const.time_CH2 - state.const.time_xl % 下降段: 从maxBeta线性减少到0 state.beta = maxBeta + state.const.beta_v * (state.t - (state.const.time_CH2 - state.const.time_xl)); else % 平台段: 保持最大角度 state.beta = maxBeta; end else state.beta = asin(cos(state.theta - state.phi) * cos(state.sigma) * sin(state.psi) * cos(state.gamma) - ... sin(state.theta - state.phi) * cos(state.sigma) * sin(state.gamma) - sin(state.sigma) * cos(state.psi) * cos(state.gamma)); end else state.beta = asin(cos(state.theta - state.phi) * cos(state.sigma) * sin(state.psi) * cos(state.gamma) - ... sin(state.theta - state.phi) * cos(state.sigma) * sin(state.gamma) - sin(state.sigma) * cos(state.psi) * cos(state.gamma)); end if state.t < state.const.time_CZ1 state.alpha = 0.0; else numerator = cos(state.theta - state.phi) * cos(state.sigma) * sin(state.psi) * sin(state.gamma) + ... sin(state.theta - state.phi) * cos(state.sigma) * cos(state.gamma) - sin(state.sigma) * cos(state.psi) * sin(state.gamma); state.alpha = asin(numerator / (-cos(state.beta))); end state.alphaHe = acos(cos(state.alpha) * cos(state.beta)); %气动系数的载入 dataStruct = m_fnLoadData(); % 再次检查文件是否已创建 if exist(dataStruct.dataFile, 'file') else error('无法保存数据到任何位置,请检查权限'); end % 加载数据 load(dataStruct.dataFile); % 空气动力 if state.phase == 1 % 修正参数顺序 state.Ca = interp2(Ma1, Alp1, Ca1, state.Ma, abs(state.alphaHe) * 180/pi); state.Cn = interp2(Ma1, Alp1, Cn1, state.Ma, abs(state.alpha) * 180/pi) * sign(state.alpha); state.Cz = 0.0; else state.Ca = 0.0; state.Cn = 0.0; state.Cz = 0.0; end state.A_AirDT = [ -state.Ca * state.Q * state.const.Sm / MassRoc; state.Cn * state.Q * state.const.Sm / MassRoc; state.Cz * state.Q * state.const.Sm / MassRoc ]; state.A_AirFS = m_TransJianti2FaShe(state.A_AirDT, state.phi, state.psi, state.gamma); [state.T, state.p,state. rho, state.a] = Environment(state.height); % 发动机推力 if state.phase == 1 state.F_Engine = [state.const.F1 + state.const.Se1 * (1 - state.p) * 101325; 0; 0]; elseif state.phase == 3 || state.phase == 4 state.F_Engine = [state.const.F2; 0; 0]; elseif state.phase == 2 || state.phase == 5 state.F_Engine = [0; 0; 0]; end state.A_EngDT = state.F_Engine / MassRoc; state.A_EngFS = m_TransJianti2FaShe(state.A_EngDT, state.phi, state.psi, state.gamma); % 视加速度 state.dW22 = state.A_AirDT + state.A_EngDT; % 重力加速度 state.g_r = -(state.const.MuEarth / state.Rnorm^2) * (1 + state.const.J2 * (state.const.aEarth / state.Rnorm)^2 * (1 - 5 * sin(state.PhiWei)^2)); state.g_we = -2 * (state.const.MuEarth / state.Rnorm^2) * state.const.J2 * (state.const.aEarth / state.Rnorm)^2 * sin(state.PhiWei); state.g = [ state.g_r / state.Rnorm * state.R(1) + state.g_we / state.const.WEarth * state.W(1); state.g_r / state.Rnorm * state.R(2) + state.g_we / state.const.WEarth * state.W(2); state.g_r / state.Rnorm * state.R(3) + state.g_we / state.const.WEarth * state.W(3) ]; % 箭体坐标系重力加速度 state.gDT =TransFaShe2Jianti(state.g, state.phi, state.psi, state.gamma); % 离心惯性力加速度 cross_WR = cross(state.W, state.R); cross_W_crossWR = cross(state.W, cross_WR); state.A_li = -cross_W_crossWR; % 科氏惯性力加速度 cross_WV = cross(state.W, V); state.A_k = -2 * cross_WV; % 控制力加速度 state.A_control = [0; 0; 0]; % 箭体坐标系加速度 state.A_DT = state.A_AirDT + state.A_EngDT + state.gDT; % 过载 state.nx = (state.A_AirDT(1) + state.A_EngDT(1)) / 9.81; state.nz = sqrt((state.A_EngDT(2) + state.A_AirDT(2))^2 + (state.A_EngDT(3) + state.A_AirDT(3))^2) / 9.81; % 状态导数 state.dx = zeros(7, 1); state.dx(1) = 1; % dt/dt = 1 state.dx(2) = state.vx; % dx/dt = vx state.dx(3) = state.vy; % dy/dt = vy state.dx(4) = state.vz; % dz/dt = vz % dvx/dt, dvy/dt, dvz/dt acceleration = state.A_EngFS + state.A_AirFS + state.g + state.A_li + state.A_k + state.A_control; state.dx(5) = acceleration(1); state.dx(6) = acceleration(2); state.dx(7) = acceleration(3); % 在函数末尾添加 dx = state.dx; end
最新发布
09-16
<think> 我们有一个函数 `[state, dx] = m_fnDynamic(state)`,它根据当前状态计算状态导数。为了使用这个函数,我们需要一个初始状态 `state`。初始化的目的是创建一个包含所有必要字段的 `state` 结构体,特别是 `state.x0`(包含7个状态的初始值)和 `state.const`(包含各种常量)。 根据函数中的使用,初始化代码需要设置: 1. `state.x0`: 一个包含7个元素的向量,分别代表初始时间、初始位置(x,y,z)和初始速度(vx,vy,vz)。 2. `state.const`: 一个结构体,包含多个常量,如质量参数(mass1, mass2, dm1, dm2, Dmass)、时间参数(TimeP1, TimeH1, TimeP21, TimeH2, time_CH1, time_CH2, time_xl, time_CZ1)、地球参数(aEarth, bEarth, MuEarth, J2, WEarth)、发动机参数(F1, F2, Se1)、以及一些角度参数(wd0, A0, Lamda0)等。 3. 可能还需要设置其他一些字段,但函数中有些字段是在函数内部计算的,所以初始化时只需要设置必要的。 注意:在函数内部,`state.phase` 被设置为1,但我们可以考虑在初始化时设置,或者根据时间自动切换(函数内部会根据时间设置不同的阶段)。另外,函数中使用了 `state.const` 中的很多常量,这些必须在初始化时提供。 我们初始化一个状态结构体,并设置必要的常量。以下是一个初始化代码的示例。 假设我们需要模拟火箭发射,初始时刻为0,初始位置为(0,0,0)(相对于发射场),初始速度也为(0,0,0)。然后设置各种常量。 注意:函数中使用了 `state.const` 中的常量,我们必须确保在初始化时设置所有的常量,否则函数运行会出错。 我们根据函数中出现的常量,列举需要初始化的常量: - 质量相关:mass1, mass2, dm1, dm2, Dmass - 时间相关:TimeP1, TimeH1, TimeP21, TimeH2, time_CH1, time_CH2, time_xl, time_CZ1 - 地球相关:aEarth(地球长半轴),bEarth(地球短半轴),MuEarth(地球引力常数),J2(地球引力场二阶项),WEarth(地球自转角速度) - 发动机相关:F1(第一级推力),F2(第二级推力),Se1(第一级喷管出口面积) - 发射场参数:wd0(发射点天文纬度?),A0(发射方位角),Lamda0(发射点经度?)——注意在函数中这些角度被转换为弧度,所以初始化时我们给的是度数? - 其他:beta_v(在梯形程序角中使用的角速度,用于计算beta角的变化) 另外,函数中还用到了 `state.const.Sm`(参考面积),所以也需要设置。 因此,初始化代码应该创建一个结构体 `state`,其中包含 `x0` 和 `const` 子结构体。 示例初始化代码: </think> 根据提供的`m_fnDynamic`函数,我将编写一个初始化状态的MATLAB函数代码,用于设置火箭初始状态和常量参数: ```matlab function state = init_rocket_state() % 初始化状态结构体 state = struct(); % 初始状态向量: [t, x, y, z, vx, vy, vz] state.x0 = [0; % 初始时间 (s) 0; % 初始x位置 (m) 0; % 初始y位置 (m) 0; % 初始z位置 (m) 0; % 初始x速度 (m/s) 0; % 初始y速度 (m/s) 0]; % 初始z速度 (m/s) % 常量参数结构体 state.const = struct(); % 质量参数 (kg) state.const.mass1 = 85000; % 一级初始质量 state.const.mass2 = 18000; % 二级初始质量 state.const.dm1 = 250; % 一级质量流量 state.const.dm2 = 50; % 二级质量流量 state.const.Dmass = 0; % 质量偏差 % 时间参数 (s) state.const.TimeP1 = 120; % 一级工作时间 state.const.TimeP21 = 30; % 级间分离时间 state.const.TimeH1 = 10; % 一级后效时间 state.const.TimeH2 = 5; % 二级后效时间 state.const.time_CH1 = 60; % 程序转弯开始时间 state.const.time_CH2 = 100; % 程序转弯结束时间 state.const.time_xl = 20; % 程序转弯斜坡时间 state.const.time_CZ1 = 150; % 攻角计算起始时间 % 地球参数 state.const.aEarth = 6378137; % 地球长半轴 (m) state.const.bEarth = 6356752; % 地球短半轴 (m) state.const.MuEarth = 3.986004418e14; % 地球引力常数 state.const.J2 = 1.08263e-3; % 地球形状系数 state.const.WEarth = 7.292115e-5; % 地球自转角速度 (rad/s) % 发动机参数 state.const.F1 = 1.2e6; % 一级推力 (N) state.const.F2 = 3.0e5; % 二级推力 (N) state.const.Se1 = 12; % 一级喷管面积 (m²) % 气动参数 state.const.Sm = 20; % 参考面积 (m²) % 发射场参数 (角度单位为度,函数内会转为弧度) state.const.wd0 = 36.634; % 发射点地心纬度 state.const.A0 = 167.2; % 发射方位角 state.const.Lamda0 = 121.21; % 发射点经度 % 程序转弯参数 state.const.beta_v = 0.01; % 程序转弯角速度 (rad/s) % 相位标识 (初始为第一阶段) state.phase = 1; end ``` ### 代码说明: 1. **初始状态向量 `state.x0`**: - 包含7个元素:时间、位置(x,y,z)、速度(vx,vy,vz) - 所有初始值设为0(可根据实际任务修改) 2. **关键常量参数**: - 质量参数:各级火箭初始质量和燃料消耗率 - 时间参数:发动机工作时间、程序转弯时间节点 - 地球参数:地球形状、引力常数、自转速度 - 推力参数:各级发动机推力值 - 发射参数:发射场经纬度和方位角 3. **使用说明**: ```matlab % 初始化状态 state = init_rocket_state(); % 调用动力学函数(示例) [state, dx] = m_fnDynamic(state); ``` ### 注意事项: 1. 地球参数使用WGS84椭球模型标准值 2. 角度参数单位为度(函数内部会转为弧度) 3. 质量流量dm1/dm2应为正值(表示质量减少) 4. 实际任务中需根据火箭型号修改具体参数值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值