TensorFlow入门 - 变量(Variables)

训练模型时,需要使用变量(Variables)保存和更新参数。Variables是包含张量(tensor)的内存缓冲。变量必须要先被初始化(initialize),而且可以在训练时和训练后保存(save)到磁盘中。之后可以再恢复(restore)保存的变量值来训练和测试模型。 
主要参考一下两类: 
 - The tf.Variable class. 
 - The tf.train.Saver class.

1.创建(Creation)

创建Variable,需将一个tensor传递给Variable()构造函数。可以使用TensorFlow提供的许多ops(操作)初始化张量,参考constants or random values。这些ops都要求指定tensor的shape(形状)。比如


  Create two variables.
  
  weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), 
                        name=”weights”) 
  biases = tf.Variable(tf.zeros([200]), name=”biases”)


调用tf.Variable()函数在graph中增加以下几个ops: 
 - 一个Variable op ,负责保存变量值。 
 - 一个initializer op,负责将变量设为初始值,这实际是tf.assign op。 
 - 初始值的op,比如zeros op 。

tf.Variable()返回一个tf.Variable类的实例。

2.设备安置(Device placement)

使用 with tf.device(…): block,将一个变量安置在一个设备上。


  Pin a variable to CPU.
  
  with tf.device(“/cpu:0”): 
    v = tf.Variable(…)
  
  Pin a variable to GPU.
  
  with tf.device(“/gpu:0”): 
    v = tf.Variable(…)
  
  Pin a variable to a particular parameter server task.
  
  with tf.device(“/job:ps/task:7”): 
    v = tf.Variable(…)


改变变量的一些ops,比如v.assign()和tf.train.Optimizer需要与变量在同一个设备上。

3.初始化(Initialization)

在运行模型中其他操作之前,必须先对变量进行初始化。最简单的初始化方法是添加一个对所有变量进行初始化的op,然后再使用model前运行此op。

3.1全局初始化

使用tf.global_variables_initializer()添加一个op来运行初始化。要在完全构建完模型后,在一个对话(Session)中运行它。


  Create two variables.
  
  weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), 
                        name=”weights”) 
  biases = tf.Variable(tf.zeros([200]), name=”biases”) 
  …
  
  Add an op to initialize the variables.
  
  init_op = tf.global_variables_initializer()
  
  Later, when launching the model
  
  with tf.Session() as sess: 
    # Run the init operation. 
    sess.run(init_op) 
    … 
    # Use the model 
    …


3.2 用其他变量值创建变量

用变量A的值初始化另一个变量B,需使用变量A的属性(property)initialized_value()。可以直接使用变量A的初始值,也可以用之计算新的值。


  Create a variable with a random value.
  
  weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), 
                        name=”weights”)
  
  Create another variable with the same value as ‘weights’.
  
  w2 = tf.Variable(weights.initialized_value(), name=”w2”)
  
  Create another variable with twice the value of ‘weights’
  
  w_twice = tf.Variable(weights.initialized_value() * 2.0, name=”w_twice”)


3.3自定义初始化

可以给tf.global_variables_initializer()添加一个显示列表自定义要初始化的变量。参考Variables Documentation了解更多。

4.保存和恢复Saving and Restoring

最简单的方法是用tf.train.Saver对象,此构造函数在graph中为所有变量(or a specified list)添加save和restore ops。saver对象提供运行这些ops的方法,并指定读写checkpoint files的路径。

4.1 checkpoint文件

变量存储在一个二进制文件中,包含从变量名称到张量值的映射。

创建checkpoint files时,可以选择性地选择变量名称来保存。默认情况,它使用每个Variable的Variable.name属性。

可以使用inspect_checkpoint库查看checkpoint file中的变量,还有print_tensrs_in_checkpoint_file函数。

4.2保存变量

用tf.train.Saver()创建一个Saver对象来管理模型中所有变量。


  Create some variables.
  
  v1 = tf.Variable(…, name=”v1”) 
  v2 = tf.Variable(…, name=”v2”) 
  …
  
  Add an op to initialize the variables.
  
  init_op = tf.global_variables_initializer()
  
  Add ops to save and restore all the variables.
  
  saver = tf.train.Saver()
  
  Later, launch the model, initialize the variables, do some work, save the variables to disk.
  
  with tf.Session() as sess: 
      sess.run(init_op)
  
  Do some work with the model.
  
  ..
  
  Save the variables to disk.
  
  save_path = saver.save(sess, “/tmp/model.ckpt”) 
    print(“Model saved in file: %s” % save_path)


先初始化变量,再操作模型,最后保存变量。

4.3恢复变量

使用同样的Saver对象恢复变量,恢复变量时,就不用先初始化变量了。


  Create some variables.
  
  v1 = tf.Variable(…, name=”v1”) 
  v2 = tf.Variable(…, name=”v2”) 
  …
  
  Add ops to save and restore all the variables.
  
  saver = tf.train.Saver()
  
  Later, launch the model, use the saver to restore variables from disk, and
  
  do some work with the model.
  
  with tf.Session() as sess:
  
  Restore variables from disk.
  
  saver.restore(sess, “/tmp/model.ckpt”) 
    print(“Model restored.”)
  
  Do some work with the model
  
  …


无初始化操作,先恢复变量,再操模型。

4.4选择保存和恢复的变量

如果不给tf.train.Saver传递任何参数,Saver会在graph中处理所有变量。每个变量会存在他们创建时的name下。

通过给tf.train.Saver传递一个Python字典,可以指定保存变量的name。key是要在checkpoint file中使用的name, values指要管理的变量。

注意:

 
可以创建多个saver,分别保存不同的变量集合。
如果在对话开始时,只恢复了部分变量,就要对其他变量运行initializer op。参考tf.variables_initializer()  


  Create some variables. 
  
  v1 = tf.Variable(…, name=”v1”) 
  v2 = tf.Variable(…, name=”v2”) 
  … 
  
  Add ops to save and restore only ‘v2’ using the name “my_v2” 
  
  saver = tf.train.Saver({“my_v2”: v2}) 
  
  Use the saver object normally after that.

---------------------

本文来自 Deephome 的优快云 博客 ,全文地址请点击:https://blog.youkuaiyun.com/muyiyushan/article/details/65442052?utm_source=copy 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值