用CNN在MNIST上做图像分类任务
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
mnist_data = datasets.MNIST("./data/mnist_data", train=True, download=True, transform=transforms.Compose([transforms.ToTensor(),]))
data = [d[0].data.cpu().numpy() for d in mnist_data]
np.mean(data)
np.std(data)
def train(model, device, train_dataloader, optimizer, epoch):
model.train()
for idx, (data, target) in enumerate(train_dataloader):
data, target = data.to(device), target.to(device)
pred = model(data)
loss = F.nll_loss(pred, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if idx % 100 == 0:
print("Train epoch: {}, iteration: {}, Loss: {}".format(epoch, idx, loss.item()))
def test(model, device, test_dataloader):
model.eval()
total_loss = 0.
correct = 0.
with torch.no_grad():
for idx, (data, target) in enumerate(test_dataloader):
data, target = data.to(device), target.to(device)
output = model(data)
total_loss += F.nll_loss(output, target, reduction="sum").item()
pred = output.argmax(dim=1)
correct += pred.eq(target.view_as(pred)).sum().item()
total_loss /= len(test_dataloader.dataset)
acc = correct/len(test_dataloader.dataset) * 100.
print("Test loss: {}, Accuracy: {}".format(total_loss, acc))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
batch_size = 32
train_dataloader = torch.utils.data.DataLoader(datasets.MNIST("./data/mnist_data", train=True, download=True, transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((np.mean(data),),(np.std(data),))])), batch_size=batch_size, shuffle=True, num_workers=1, pin_memory=True)
test_dataloader = torch.utils.data.DataLoader(datasets.MNIST("./data/mnist_data", train=False, download=True, transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((np.mean(data),),(np.std(data),))])), batch_size=batch_size, shuffle=True, num_workers=1, pin_memory=True)
lr = 0.01
momentum = 0.5
model = Net().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=momentum)
num_epochs = 2
for epoch in range(num_epochs):
train(model, device, train_dataloader, optimizer, epoch)
test(model, device, test_dataloader)
torch.save(model.state_dict(), "./model/mnist_cnn.pt")