import sys,os
sys.path.append(os.pardir)
import numpy as np
from dataset.mnist import load_mnist
(x_train,t_train),(x_test,t_test) = \
load_mnist(normalize = True,one_hot_label=True)#已经正规化了,所以像素在0~1之间
print(x_train.shape)
print(t_train.shape)
#print(x_train)
train_size = x_train.shape[0]
batch_size = 10
batch_mask = np.random.choice(train_size, batch_size)#从60000个中随机取10个索引
#print(batch_mask)#打印出了十个索引组成的列表(10,)
x_batch = x_train[batch_mask]
#suiji = x_train[[1,2]]
#print(suiji.shape)#(2,784)
#print(suiji)#打印出来的是这2个索引所指的图像数据值所组成的数组(2,784)
t_batch = t_train[batch_mask]#打印出来的是这几个个索引所指的训练标签的one_hot_label
#suiji = t_train[[100,900]]
#print(suiji)