Task

 随着 .NET 4.0的到来,她与以前各版本的一个明显差别就是并行功能的增强,以此来适应这个多核的世界。于是引入了一个新概念---任务,作为支持并行运算的重要组成部分,同时,也作为对线程池的一个补充和完善。从所周知,使用线程池有两个明显的缺点,那就是一旦把我们要执行的任务放进去后,什么时候执行完成,以及执行完成后需要返回值,我们都无法通过内置的方式而得知。由于任务(Task)的推出,使得我们对并行编程变得简单,而且不用关心底层是怎么实现的,由于比线程池更灵活,如果能掌握好Task,对于写出高效的并行代码非常有帮助。

一、新建任务

      在System.Threading.Tasks命名空间下,有两个新类,Task及其泛型版本Task<TResult>,这两个类是用来创建任务的,如果执行的代码不需要返回值,请使用Task,若需要返回值,请使用Task<TResult>。

      创建任务的方式有两种,一种是通过Task.Factory.StartNew方法来创建一个新任务,如:

      Task task = Task.Facotry.StartNew(()=>Console.WriteLine(“Hello, World!”));//此行代码执行后,任务就开始执行

      另一种方法是通过Task类的构造函数来创建一个新任务,如:

      Task task = new Task(()=>Console.WriteLine(“Hello, World!”));//此处只把要完成的工作交给任务,但任务并未开始

      task.Start();//调用Start方法后,任务才会在将来某个时候开始执行。

      同时,我们可以调用Wait方法来等待任务的完成或者调用IsCompleted属性来判断任务是否完成。需要说明的是,两种创建任务的方法都可以配合TaskCreationOptions枚举来实现我们对任务执行的行为具体控制, 同时,这两种创建方式允许我们传递一个TaskCreationOptions对象来取消正在运行中的任务,请看任务的取消。

二、任务的取消

     这世界唯一不变的就是变化,当外部条件发生变化时,我们可能会取消正在执行的任务。对于.NET 4.0之前,.NET并未提供一个内置的解决方案来取消线程池中正在执行的代码,但在.NET 4.0中,我们有了Cooperative Cancellation模式,这使得取消正在执行的任务变得非常简单。如下所示:

using System; 
using System.Threading; 
using System.Threading.Tasks;

namespace TaskDemo 

    class Program 
    { 
        static void Main() 
        { 
            CancellationTokenSource cts = new CancellationTokenSource(); 
            Task t = new Task(() => LongRunTask(cts.Token)); 
            t.Start(); 
            Thread.Sleep(2000); 
            cts.Cancel(); 
            Console.Read(); 
        }

        static void LongRunTask(CancellationToken token) 
        {

             //此处方法模拟一个耗时的工作 
            for (int i = 0; i < 1000; i++) 
            { 
                if (!token.IsCancellationRequested) 
                { 
                    Thread.Sleep(500); 
                    Console.Write("."); 
                } 
                else 
                { 
                    Console.WriteLine("任务取消"); 
                    break; 
                } 
            } 
        } 
    } 
}

三、任务的异常机制

    在任务执行过程中产生的未处理异常,任务会把它暂时隐藏起来,装进一个集合中。当我们调用Wait方法或者Result属性时,任务会抛出一个AggregateException异常。我们可以通过调用AggregateException对象的只读属性InnerExceptions来得到一个ReadOnlyCollection<Exception>对象,它才是存储抛出异常的集合,它的第一个元素就是最初抛出的异常。同样的,AggregateException对象的InnerException属性也会返回最初抛出的异常。

    值得重视的是,由于任务的隐藏机制的特点,一旦产生异常后,如果我们不调用相应的方法或者属性查看异常,我们也无法判断是否有异常产生(Task不会主动抛出异常)。当Task对象被GC回收时,Finalize方法会查检是否有未处理的异常,如果不幸刚才好有,则Finalize方法会将此AggregateException再度抛出,如果再不幸,我们没有捕获处理这个异常,则我们的程序会立即中止运行。如果发生这样的事情,会是多么大的灾难啊!

    为了避免这种不幸的发生,我们可以通过注册TaskScheduler类的静态UnobservedTaskException事件来处理这种未被处理的异常,避免程序的崩溃。

四、任务启动任务

    任务的强大与灵活之一是,当我们完成一个任务时,可以自动开始一个新任务的执行。如下所示:

using System; 
using System.Threading; 
using System.Threading.Tasks;

namespace TaskDemo 

    public class AutoTask 
    { 
        static void Main() 
        { 
            Task task = new Task(() => { Thread.Sleep(5000); Console.WriteLine("Hello,"); Thread.Sleep(5000); }); 
            task.Start(); 
            Task newTask = task.ContinueWith(t => Console.WriteLine("World!")); 
            Console.Read(); 
        } 
    } 
}

对于ContinueWith方法,我们可以配合TaskContinuationOptions枚举,得到更多我们想要的行为。

五、子任务

    任务是支持父子关系的,即在一个任务中创建新任务。如下所示:

using System; 
using System.Threading.Tasks;

namespace TaskDemo 

    class ChildTask 
    { 
        static void Main() 
        { 
            Task parant = new Task(() => 
            { 
                new Task(() => Console.WriteLine("Hello")).Start(); 
                new Task(() => Console.WriteLine(",")).Start(); 
                new Task(() => Console.WriteLine("World")).Start(); 
                new Task(() => Console.WriteLine("!")).Start(); 
            }); 
            parant.Start(); 
            Console.ReadLine(); 
        } 
    } 
}

值得注意的是,以上代码中所示的子任务的调用并不是以代码的出现先后为顺序来调用的。

六、任务工厂

   在某些情况下,我们会遇到创建大量的任务,而恰好这些任务共用某个状态参数(如CancellationToken),为了避免大量的调用任务的构造器和一次又一次的参数传递,我们可以使用任务工厂来为我们处理这种大量创建工作。如下代码所示:

using System; 
using System.Threading; 
using System.Threading.Tasks;

namespace TaskDemo 

    public class FactoryOfTask 
    { 
        static void Main() 
        { 
            Task parent = new Task(() => 
            { 
                CancellationTokenSource cts = new CancellationTokenSource(); 
                TaskFactory tf = new TaskFactory(cts.Token); 
                var childTask = new[] 
                { 
                 tf.StartNew(()=>ConcreteTask(cts.Token)), 
                 tf.StartNew(()=>ConcreteTask(cts.Token)), 
                 tf.StartNew(()=>ConcreteTask(cts.Token)) 
                };

                Thread.Sleep(5000);//此处睡眠等任务开始一定时间后才取消任务 
                cts.Cancel(); 
            } 
            );

            parent.Start();//开始执行任务 
            Console.Read(); 
        }

        static void ConcreteTask(CancellationToken token) 
        { 
            while (true) 
            { 
                if (!token.IsCancellationRequested) 
                { 
                    Thread.Sleep(500); 
                    Console.Write("."); 
                } 
                else 
                { 
                    Console.WriteLine("任务取消"); 
                    break; 
                } 
            } 
        } 
    } 
}

七、任务调度程序

    任务的调度通过调度程序来实现的,目前,.NET 4.0内置两种任务调度程序:线程池任务调度程序(thread pool task scheduler)和同步上下文任务调度程序(synchronization context task scheduler)。默认情况下,应用程序使用线程池任务调度程序调用线程池的工作线程来完成任务,如受计算限制的异步操作。同步上下文任务调度程序通常使用UI线程来完成与Windows Forms,Windows Presentation Foundation(WPF)以及SilverLight应用程序相关的任务。

   可喜的是,.NET 4.0 提供了TaskScheduler抽象类供开发人员继承来实现自定义任务调度程序的开发,有兴趣的同学可以试试。

八、总结

      任务给了我们更多的方便性、灵活性的同时,也带来了比线程池更多的资源消耗。如果想减少资源消耗,请直接使用线程池QueueUserWorkItem方法效果会更好;如果想要更多的控制与灵活性,任务(Task)是不二的选择。这个要我们开发者自己去斟酌了。

参考文献:《CLR Via C#》,Third edtion, 作者:Jeffrey Richer,726页-739页

《Introducing .NET 4.0 With Visual Studio 2010》,作者:Alex Mackey,106页-111页

转载:http://www.cnblogs.com/myshell/archive/2010/03/23/1692059.html


void go_to_xy(float target_x, float target_y) 的函数发现执行时,只执行了第一阶段。考虑运用switch函数解决,可以使用别的方法#include <math.h> // 添加数学库用于fabs函数 #include "board.h" #include "my_key.h" #include "my_time.h" #include "ti_msp_dl_config.h" #include "oled.h" #define _USE_MATH_DEFINES #define WHEEL_BASE 80.0f #ifndef M_PI #define M_PI 3.14159265358979323846 #endif void BUZZY_OFF(void) { DL_GPIO_setPins(BUZZY_PORT, BUZZY_PIN_PIN); } void BUZZY_ON(void) { DL_GPIO_clearPins(BUZZY_PORT, BUZZY_PIN_PIN); } void refresh_oled(void); void key(void); void go_straight(int dis); void go_arc_ccd(hsu_time_t); void go_brc_ccd(hsu_time_t); void turn_90_degrees(int direction); void turn_in_place(float angle); void go_to_xy(float target_x, float target_y); void sound_light_alert(void); void show_task_now(void); u8 Car_Mode = Diff_Car; int Motor_Left, Motor_Right; // 电机PWM变量 应是Motor的 u8 PID_Send; // 延时和调参相关变量 float RC_Velocity = 200, RC_Turn_Velocity, Move_X, Move_Y, Move_Z, PS2_ON_Flag; // 遥控控制的速度 float Velocity_Left, Velocity_Right; // 车轮速度(mm/s) u16 test_num, show_cnt; float Voltage = 0; extern float Yaw; // 声明外部YAW角度变量 int64_t left_encoder = 0, right_encoder = 0; void SysTick_Handler(void) { hsu_time_systick_handler(); } typedef enum { BEGIN, T1, T2, T3, T4 } TaskState; typedef enum { STOP, GO_STRAIGHT, GO_CCD, TURN_IN_PLACE, TURN_90_DEGREES, WAIT_ALERT } DoingWhat; typedef struct __TASK_NAMESPACE { uint8_t is; uint8_t is_running; uint8_t finish; uint8_t sub_finish; uint8_t running_state; // 0: 停止, 1: 运行中 TaskState state; DoingWhat doing_what; float target; float vx; float vz; // 用于复杂任务 uint8_t sub_task_stage; // 子任务阶段 uint8_t lap_count; // 圈数计数 int64_t start_encoder; // 起始编码器值 uint32_t alert_start_time; // 声光提示开始时间 float start_yaw; // 起始YAW角度 float target_yaw_diff; // 目标YAW角度差 hsu_time_t ccd_end_time; float target_x; // 目标X坐标 (毫米) float target_y; // 目标Y坐标 (毫米) float current_x; // 当前X坐标 (毫米) float current_y; // 当前Y坐标 (毫米) int64_t rotation_start_left; // 旋转开始时左轮编码器值 int64_t rotation_start_right; // 旋转开始时右轮编码器值 float target_rotation; // 目标旋转量(弧度) } TaskNamespace; void reset_task_namespace(TaskNamespace *t) { t->is_running = 0; t->finish = 0; t->sub_finish = 0; t->state = BEGIN; t->doing_what = STOP; t->vx = 0; t->vz = 0; t->sub_task_stage = 0; t->lap_count = 0; t->start_encoder = left_encoder; t->alert_start_time = 0; t->start_yaw = 0; t->target_yaw_diff = 0; t->running_state = 0; // 明确重置运行状态为0 t->ccd_end_time = 0; t->is = 0; // 初始化坐标 t->target_x = 0.0f; t->target_y = 0.0f; t->current_x = 0.0f; t->current_y = 0.0f; t->rotation_start_left = 0; t->rotation_start_right = 0; t->target_rotation = 0.0f; } void next_state(TaskNamespace *t) { TaskState last_state = t->state; reset_task_namespace(t); if (last_state < T4) { t->state = last_state + 1; } } TaskNamespace task_namespace; void show_task_now(void) { //OLED_ShowString(0, 0, "Task Now:"); switch (task_namespace.state) { case BEGIN: OLED_ShowString(1, 10,"0"); break; case T1: OLED_ShowString(1, 10,"1"); break; case T2: OLED_ShowString(1, 10,"2"); break; case T3: OLED_ShowString(1, 10,"3"); break; case T4: OLED_ShowString(1, 10,"4"); break; default: break; } } void main_task(void); int main(void) { // 系统初始化 SYSCFG_DL_init(); // 初始化系统配置 hsu_time_init(); // 时间 // 清除所有外设的中断挂起状态 NVIC_ClearPendingIRQ(ENCODERA_INT_IRQN); // 编码器A中断 NVIC_ClearPendingIRQ(ENCODERB_INT_IRQN); // 编码器B中断 NVIC_ClearPendingIRQ(UART_0_INST_INT_IRQN); // UART0串口中断 // 使能各外设的中断 NVIC_EnableIRQ(ENCODERA_INT_IRQN); // 开启编码器A中断 NVIC_EnableIRQ(ENCODERB_INT_IRQN); // 开启编码器B中断 NVIC_EnableIRQ(UART_0_INST_INT_IRQN); // 开启UART0中断 reset_task_namespace(&task_namespace); task_namespace.state = BEGIN; // 明确设置初始状态 // 定时器和ADC相关中断配置 NVIC_ClearPendingIRQ(TIMER_0_INST_INT_IRQN); // 清除定时器0中断挂起 NVIC_EnableIRQ(TIMER_0_INST_INT_IRQN); // 开启定时器0中断 NVIC_EnableIRQ(ADC12_VOLTAGE_INST_INT_IRQN); NVIC_EnableIRQ(ADC12_CCD_INST_INT_IRQN); OLED_Init(); // 初始化OLED显示屏 OLED_ShowString(1, 1, "Task Now:"); OLED_ShowString(2, 1, "state:"); OLED_ShowString(3, 1, "yaw:"); OLED_ShowString(4, 1, "x:"); OLED_ShowString(4, 6, "y:"); //MPU6050_initialize(); //DMP_Init(); BUZZY_ON(); // 主循环 // printf("Test delay 500us\n"); // hsu_time_delay_us(500); // printf("Test delay 500us end\n"); uint8_t main_task_timer = hsu_time_timer_create(10, true, main_task); hsu_time_timer_start(main_task_timer); uint8_t refresh_oled_timer = hsu_time_timer_create(5, true, refresh_oled); hsu_time_timer_start(refresh_oled_timer); uint8_t key_timer = hsu_time_timer_create(2, true, key); hsu_time_timer_start(key_timer); while (1) { hsu_time_timer_process(); RD_TSL(); // 读取CCD数据 Find_CCD_Median(); // 计算CCD数据中值 Read_DMP(); show_task_now(); //DL_GPIO_togglePins(LED_PORT, LED_led_PIN); // printf("L=%lld R=%lld YAW=%.1f\n", left_encoder, right_encoder, Yaw); } } void task_no(void); void task_1(void); void task_2(void); void task_3(void); void task_4(void); void main_task(void) { if (!(task_namespace.is)) return; printf("main task\n"); switch (task_namespace.state) { case BEGIN: task_no(); break; case T1: task_1(); break; case T2: task_2(); break; case T3: task_3(); break; case T4: task_4(); break; default: break; } switch (task_namespace.doing_what) { case STOP: Get_Target_Encoder(0, 0); break; case GO_STRAIGHT: if ((left_encoder * 1.f) < task_namespace.target) { Get_Target_Encoder(0.6, 0); // 提高速度到600mm/s } else { Get_Target_Encoder(0, 0); task_namespace.doing_what = STOP; task_namespace.finish = 1; } break; case GO_CCD: if (task_namespace.ccd_end_time < hsu_time_get_ms()) { Get_Target_Encoder(0, 0); task_namespace.doing_what = STOP; task_namespace.finish = 1; } else { CCD_Mode(); } break; case TURN_IN_PLACE: // 原地转向控制 if (task_namespace.target_yaw_diff != 0) { float current_yaw_diff = Yaw - task_namespace.start_yaw; // 处理角度跨越±180度的情况 if (current_yaw_diff > 180) { current_yaw_diff -= 360; } else if (current_yaw_diff < -180) { current_yaw_diff += 360; } printf("Turn: Start=%.1f Current=%.1f Diff=%.1f Target=%.1f\n", task_namespace.start_yaw, Yaw, current_yaw_diff, task_namespace.target_yaw_diff); // 检查是否达到目标角度 if ((task_namespace.target_yaw_diff > 0 && current_yaw_diff >= task_namespace.target_yaw_diff) || (task_namespace.target_yaw_diff < 0 && current_yaw_diff <= task_namespace.target_yaw_diff)) { Get_Target_Encoder(0, 0); // 停止转向 task_namespace.doing_what = STOP; task_namespace.finish = 1; } else { // 继续转向 float turn_speed = (task_namespace.target_yaw_diff > 0) ? 0.1 : -0.1; Get_Target_Encoder(0, turn_speed); } } break; case TURN_90_DEGREES: { // 计算当前旋转角度(使用编码器差值) float rotation = (left_encoder - task_namespace.rotation_start_left - (right_encoder - task_namespace.rotation_start_right)) * M_PI / (2 * WHEEL_BASE); // 检查是否达到目标角度(允许±0.1弧度误差) if (fabs(rotation - task_namespace.target_rotation) < 0.1f) { Get_Target_Encoder(0, 0); // 停止旋转 task_namespace.doing_what = STOP; task_namespace.finish = 1; } else { // 控制旋转速度(根据方向调整) float turn_speed = (task_namespace.target_rotation > 0) ? 0.1f : -0.1f; Get_Target_Encoder(-turn_speed, turn_speed); // 左右轮反向运动 } break; } case WAIT_ALERT: Get_Target_Encoder(0, 0); // 停车 if (hsu_time_get_ms() - task_namespace.alert_start_time > 1000) { // 声光提示1秒 task_namespace.doing_what = STOP; task_namespace.finish = 1; } break; default: break; } } void task_no(void) { return; } // 任务1:A点到B点直线行驶 void task_1(void) { if (!task_namespace.is_running) { task_namespace.is_running = 1; task_namespace.sub_task_stage = 0; task_namespace.finish = 1; return; } if (task_namespace.finish) { switch (task_namespace.sub_task_stage) { case 0: // 开始第一阶段:A到B go_straight(3300); break; case 1: // 完成亮灯 DL_GPIO_togglePins(LED_PORT, LED_led_PIN); break; case 2: //任务结束 reset_task_namespace(&task_namespace); task_namespace.running_state = 0; // 重置为停止状态 break; } task_namespace.finish = 0; task_namespace.sub_task_stage++; } return; } // 任务2:X Y坐标行驶 void task_2(void) { if (!task_namespace.is_running) { task_namespace.is_running = 1; task_namespace.sub_task_stage = 0; task_namespace.finish = 1; return; } if (task_namespace.finish) { switch (task_namespace.sub_task_stage) { case 0: // 运动到XY坐标 go_to_xy(3000.0f, 3000.0f); break; case 1: // 完成灯亮 DL_GPIO_togglePins(LED_PORT, LED_led_PIN); break; case 2: // 任务结束 sound_light_alert(); reset_task_namespace(&task_namespace); break; } task_namespace.finish = 0; task_namespace.sub_task_stage++; } return; } // 任务3:A->C->B->D->A循环 void task_3(void) { if (!task_namespace.is_running) { task_namespace.is_running = 1; task_namespace.sub_task_stage = 0; task_namespace.finish = 1; return; } if (task_namespace.finish) { switch (task_namespace.sub_task_stage) { case 0: turn_in_place(-31.0f); break; case 1: go_straight(4060); break; case 2: turn_in_place(30.0f); break; case 3: // 开始C到B弧线 sound_light_alert(); //go_straight(40); go_brc_ccd(3550); break; case 4: turn_in_place(36.0f); break; case 5: sound_light_alert(); go_straight(3985); break; case 6: turn_in_place(-40.0f); break; case 7: // 开始C到B弧线 sound_light_alert(); go_arc_ccd(3600); break; case 8: // D到A弧线完成,任务结束 sound_light_alert(); reset_task_namespace(&task_namespace); break; } task_namespace.finish = 0; task_namespace.sub_task_stage++; } return; } // 任务4:重复任务3路径4圈 void task_4(void) { if (!task_namespace.is_running) { task_namespace.is_running = 1; task_namespace.sub_task_stage = 0; task_namespace.finish = 1; return; } if (task_namespace.finish) { switch (task_namespace.sub_task_stage) { case 0: turn_in_place(-30.0f); break; case 1: go_straight(4045); break; case 2: turn_in_place(29.0f); break; case 3: // 开始C到B弧线 sound_light_alert(); //go_straight(40); go_brc_ccd(5000); break; case 4: turn_in_place(34.0f); break; case 5: sound_light_alert(); go_straight(4035); break; case 6: turn_in_place(-33.0f); break; case 7: // 开始C到B弧线 sound_light_alert(); go_arc_ccd(5000); break; case 8: // D到A弧线完成,任务结束 sound_light_alert(); reset_task_namespace(&task_namespace); break; } task_namespace.finish = 0; task_namespace.sub_task_stage++; } } void TIMER_0_INST_IRQHandler(void) { if (DL_TimerA_getPendingInterrupt(TIMER_0_INST)) { if (DL_TIMER_IIDX_ZERO) { Get_Velocity_From_Encoder(Get_Encoder_countA, Get_Encoder_countB); Get_Encoder_countA = Get_Encoder_countB = 0; MotorA.Motor_Pwm = Incremental_PI_Left(MotorA.Current_Encoder, MotorA.Target_Encoder); MotorB.Motor_Pwm = Incremental_PI_Right(MotorB.Current_Encoder, MotorB.Target_Encoder); if (!Flag_Stop) { Set_PWM(-MotorA.Motor_Pwm, -MotorB.Motor_Pwm); } else { Set_PWM(0, 0); } } } } uint32_t gpio_interrup1, gpio_interrup2; int64_t B1, B2, B3, B4; int64_t A1, A2, A3, A4; void GROUP1_IRQHandler(void) { // 获取中断信号 gpio_interrup1 = DL_GPIO_getEnabledInterruptStatus(ENCODERA_PORT, ENCODERA_E1A_PIN | ENCODERA_E1B_PIN); gpio_interrup2 = DL_GPIO_getEnabledInterruptStatus(ENCODERB_PORT, ENCODERB_E2A_PIN | ENCODERB_E2B_PIN); // encoderB if ((gpio_interrup1 & ENCODERA_E1A_PIN) == ENCODERA_E1A_PIN) { if (!DL_GPIO_readPins(ENCODERA_PORT, ENCODERA_E1B_PIN)) { right_encoder--; Get_Encoder_countB--; } else { right_encoder++; Get_Encoder_countB++; } } else if ((gpio_interrup1 & ENCODERA_E1B_PIN) == ENCODERA_E1B_PIN) { if (!DL_GPIO_readPins(ENCODERA_PORT, ENCODERA_E1A_PIN)) { right_encoder++; Get_Encoder_countB++; } else { right_encoder--; Get_Encoder_countB--; } } // encoderA if ((gpio_interrup2 & ENCODERB_E2A_PIN) == ENCODERB_E2A_PIN) { if (!DL_GPIO_readPins(ENCODERB_PORT, ENCODERB_E2B_PIN)) { left_encoder++; Get_Encoder_countA--; } else { left_encoder--; Get_Encoder_countA++; } } else if ((gpio_interrup2 & ENCODERB_E2B_PIN) == ENCODERB_E2B_PIN) { if (!DL_GPIO_readPins(ENCODERB_PORT, ENCODERB_E2A_PIN)) { left_encoder--; Get_Encoder_countA++; } else { left_encoder++; Get_Encoder_countA--; } } DL_GPIO_clearInterruptStatus(ENCODERA_PORT, ENCODERA_E1A_PIN | ENCODERA_E1B_PIN); DL_GPIO_clearInterruptStatus(ENCODERB_PORT, ENCODERB_E2A_PIN | ENCODERB_E2B_PIN); } // 直线行驶函数 void go_straight(int dis) { task_namespace.doing_what = GO_STRAIGHT; task_namespace.target = left_encoder + dis; task_namespace.finish = 0; } // 原地转向函数 void turn_in_place(float angle) { task_namespace.doing_what = TURN_IN_PLACE; task_namespace.start_yaw = Yaw; task_namespace.target_yaw_diff = angle; // 正值右转,负值左转 task_namespace.finish = 0; } // CCD巡线函数(需要外部条件结束) void go_ccd_line(void) { task_namespace.doing_what = GO_CCD; task_namespace.start_encoder = left_encoder; task_namespace.finish = 0; // 设置一个安全的最大距离,防止无限巡线 // 可以根据实际场地调整这个值 static uint32_t ccd_end_time = 0; if (ccd_end_time == 0) { ccd_end_time = hsu_time_get_ms(); } // 如果巡线时间超过10秒或距离超过2000mm,强制结束 if (hsu_time_get_ms() - ccd_end_time > 10000 || (left_encoder * 1.f - task_namespace.start_encoder) > 2000) { task_namespace.finish = 1; ccd_end_time = 0; } } // 弧线CCD巡线函数 void go_arc_ccd(hsu_time_t time) { task_namespace.doing_what = GO_CCD; task_namespace.start_encoder = left_encoder; task_namespace.ccd_end_time = hsu_time_get_ms() + time; } void go_brc_ccd(hsu_time_t time) { task_namespace.doing_what = GO_CCD; task_namespace.start_encoder = right_encoder; task_namespace.ccd_end_time = hsu_time_get_ms() + time; } // 旋转90度函数 /*void turn_90_degrees(int direction) { // direction: 1为顺时针,-1为逆时针 turn_in_place(90.0f * direction); }*/ // 运动到指定坐标函数 void go_to_xy(float target_x, float target_y) { task_namespace.sub_task_stage = 0; // 重置子任务阶段 // 第一阶段:运动到X坐标 float x_distance = target_x - task_namespace.current_x; go_straight((int)fabs(x_distance)); // 使用绝对值距离 // 更新当前坐标 task_namespace.current_x = target_x; // 第二阶段:旋转90度(方向根据Y坐标位置决定) int direction = (target_y > task_namespace.current_y) ? 1 : -1; turn_90_degrees(direction); // 第三阶段:运动到Y坐标 float y_distance = target_y - task_namespace.current_y; go_straight((int)fabs(y_distance)); // 使用绝对值距离 // 更新当前坐标 task_namespace.current_y = target_y; } // 旋转90度函数(使用编码器计算) void turn_90_degrees(int direction) { // 保存旋转开始时的编码器值 task_namespace.rotation_start_left = left_encoder; task_namespace.rotation_start_right = right_encoder; // 计算目标旋转量(90度 = π/2 弧度) // 假设轮距为120mm(根据实际小车尺寸调整) #define WHEEL_BASE 80.0f task_namespace.target_rotation = (direction > 0) ? (M_PI/2) : (-M_PI/2); // 设置状态为旋转 task_namespace.doing_what = TURN_90_DEGREES; task_namespace.finish = 0; } // 声光提示函数 void sound_light_alert(void) { DL_GPIO_togglePins(LED_PORT, LED_led_PIN); DL_GPIO_setPins(BUZZY_PORT, BUZZY_PIN_PIN); uint32_t start_time = hsu_time_get_ms(); while (hsu_time_get_ms() - start_time < 1000) { // 空循环等待1秒 } //hsu_time_delay_ms(200); DL_GPIO_togglePins(LED_PORT, LED_led_PIN); DL_GPIO_clearPins(BUZZY_PORT, BUZZY_PIN_PIN); } // callback void refresh_oled(void) { show_task_now(); OLED_ShowString(2, 1, "state:"); if (task_namespace.running_state) { OLED_ShowString(2, 7, "1"); // 运行中 } else { OLED_ShowString(2, 7, "0"); // 停止 } } uint32_t key_get_tick_ms(void) { return hsu_time_get_ms(); } void key(void) { key_event_t event = key_scan(); //uint8_t key_value = key_read_pin(); // 获取按键状态 //S1 switch (event) { case KEY_EVENT_SINGLE_CLICK: next_state(&task_namespace); break; case KEY_EVENT_DOUBLE_CLICK: task_namespace.is = 1; task_namespace.running_state = 1; task_namespace.is_running = 0; // 重置任务运行标志 break; } }
最新发布
07-21
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值