NP问题

本文介绍了P问题与NP问题的基本概念,探讨了NP完全问题及其重要性,解释了P是否等于NP这一未解之谜,并列举了几种常用的解决NP完全问题的搜索方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简述:

  首先需要介绍P(Polynomial,多项式)问题.P问题是可以在多项式时间内被确定机(通常意义的计算机)解决的问题.NP(Non-Deterministic Polynomial, 非确定多项式)问题,是指可以在多项式时间内被非确定机(它可以猜,他总是能猜到最能满足你需要的那种选择,如果你让他解决n皇后问题,他只要猜n次就能完成----每次都是那么幸运)解决的问题.这里有一个著名的问题----千禧难题之首,是说P问题是否等于NP问题,也即是否所有在非确定机上多项式可解的问题都能在确定机上用多项式时间求解.
  NP完全(NP Complete,NPC)问题是指这样一类NP问题,所有的NP问题都可以用多项式时间划归到他们中的一个.所以显然NP完全的问题具有如下性质:它可以在 多项式时间 内求解,当且仅当所有的其他的NP-完全问题也可以在多项式时间内求解。这样一来,只要我们找到一个NPC问题的多项式解,所有的NP问题都可以多项式时间内划归成这个NPC问题,再用多项式时间解决,这样NP就等于P了.
  换一种说法,如果一个问题的复杂度是该问题的一个实例规模n的多项式函数,则这种可以在多项式时间内解决的问题属于P类问题.通俗地称所有复杂度为多项式时间的问题为易解的问题类,否则为难解的问题。
  有些问题很难找到多项式时间的算法(或许根本不存在),例如“找出无向图中 哈密顿回路 ”问题。但如果给了该问题的一个答案,可以在多项式时间内判断这个答案是否正确。例如说对于哈密顿回路问题,给一个任意的回路,很容易判断它是否是哈密顿回路(只要看是不是所有的顶点都在回路中就可以了)。这里给出NP问题的另一个定义,这种可以在多项式时间内验证一个解是否正确的问题成为NP问题,亦称为验证问题类。

  简单的说,存在多项式时间的算法的一类问题,称之为P类问题;而像梵塔问题,推销员旅行问题等问题,至今没有找到多项式时间算法解的一类问题,称之为NP问题。同时,P类问题是NP问题的一个子集。

非确定性问题的概述

  什么是非确定性(Non-Deterministic)问题呢?有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题。有没有一个公式,你一套公式,就可以一步步推算出来,下一个质数应该是多少呢?这样的公式是没有的。再比如,大的合数 分解质因数 的问题,有没有一个公式,把合数代进去,就直接可以算出,它的 因子 各自是多少?也没有这样的公式。这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。这也就是非确定性问题。而这些问题的通常有个算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。这个可以告诉你“猜算”的答案正确与否的算法,假如可以在多项式(polynomial)时间内算出来,就叫做多项式非确定性问题。而如果这个问题的所有可能答案,都是可以在多项式时间内进行正确与否的验算的话,就叫完全多项式非确定问题。完全多项式非确定性问题可以用穷举法得到答案,一个个检验下去,最终便能得到结果。但是这样算法的复杂程度,是指数关系,因此计算的时间随问题的复杂程度成指数的增长,很快便变得不可计算了。

       人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在指数时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。解决这个猜想,无非两种可能,一种是找到一个这样的算法,只要针对某个特定NP完全问题找到一个算法,所有这类问题都可以迎刃而解了,因为他们可以转化为同一个问题。另外的一种可能,就是这样的算法是不存在的。那么就要从数学理论上证明它为什么不存在。


搜索方法

 

     近邻法(nearest neighbor)


  推销员从某个城镇出发,永远选择前往最近且尚未去过的城镇,最后再返回原先的出发点。这方法简单,也许是多数人的直觉做法,但是近邻法的短视使其表现非常不好,通常后段的路程会非常痛苦。

插入法(insertion)

  先产生连接部分点的子路线,再根据某种法则将其它的点逐一加入路线。比如最近插入法(nearest insertion),先针对外围的点建构子路线,然后从剩余的点里面评估何者加入后路线总长度增加的幅度最小,再将这个点加入路线。又比如最远插入法(farthest,insertion),是从剩余的点里面选择距离子路线最远的点,有点先苦后甜的滋味。

模拟退火算法(Recuit Algorithm)

   模拟退火算法 来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则, 粒子 在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解。

遗传算法

  遗传算法是仿真生物遗传学和自然选择机理,通过人工方式所构造的一类搜索算法, 从某种程度上说遗传算法是对生物进化过程进行的数学方式仿真。 生物 种群的生存过程普遍遵循 达尔文 进化准则,群体中的个体根据对环境的适应能力而被大自然所选择或淘汰。进化过程的结果反映在个体的结构上,其染色体包含若干基因,相应的表现型和基因型的联系体现了个体的外部特性与内部机理间逻辑关系。通过个体之间的交叉、变异来适应大自然环境。生物染色体用数学方式或计算机方式来体现就是一串数码,仍叫染色体,有时也叫个体;适应能力是对应着一个染色体的一个数值来衡量;染色体的选择或淘汰则按所面对的问题是求最大还是最小来进行。

神经网络算法

  根据一个简化的统计,人脑由百亿条神经组成 — 每条神经平均连结到其它几千条神经。通过这种连结方式,神经可以收发不同 数量 的能量。神经的一个非常重要的功能是它们对能量的接受并不是立即作出响应,而是将它们累加起来,当这个累加的总和达到某个临界阈值时,它们将它们自己的那部分能量发送给其它的神经。大脑通过调节这些连结的数目和强度进行学习。尽管这是个生物行为的简化描述。但同样可以充分有力地被看作是神经网络的模型。

相关

  最常被引用的结果之一设计神喻。假想你有一个魔法机器可以解决单个问题,例如决定一个给定的数字是否为质数,但可以瞬间解决这个问题。我们的新问题是,若我们被允许任意利用这个机器,是否存在我们可以在多项式时间内验证但无法在多项式时间内解决的问题?结果是,依赖于机器能解决的问题,P = NP和P ≠ NP二者都可以证明。这个结论的后果是,任何可以修改来证明该机器的存在性的结果不能解决问题。不幸的是,几乎所有经典的方法和大部分已知的方法可以这样修改(我们称它们在相对化)。
  如果这还不算太糟的话,1993年Razborov和Rudich证明的一个结果表明,给定一个特定的可信的假设,在某种意义下“自然”的证明不能解决P = NP问题。这表明一些现在似乎最有希望的方法不太可能成功。随着更多这类的定理得到证明,该定理的可能证明有越来越多的陷阱要规避。这实际上也是为什么NP完全问题有用的原因:若有一个多项式时间算法,或者没有一个这样的算法,对于NP完全问题存在,这将用一种相信不被上述结果排除在外的方法来解决P = NP问题。P=NP问题可以用逻辑命题的特定类的可表达性的术语来重新表述。所有P中的语言可以用一阶逻辑加上最小不动点操作(实际上,这允许了递归 函数 的定义)来表达。类似地,NP是可以用存在性二阶逻辑来表达—也就是,在关系、函数、和子集上排除了全域量词的二阶逻辑。多项式等级,PH中的语言对应与所有的二阶逻辑。这样,“P是NP的 真子集 吗”这样的问题可以表述为“是否存在性二阶逻辑能够表达带最小不动点操作的一阶逻辑的所不能表达的语言?”
   普林斯顿大学 计算机系楼将二进制代码表述的“P=NP?”问题刻进顶楼西面的砖头上。如果证明了P=NP,砖头可以很方便的换成表示“P=NP!”。 康奈尔大学 的Hubert Chen博士提供了这个玩笑式的P不等于NP的证明:“反证法。设P = NP。令y为一个P = NP的证明。证明y可以用一个合格的计算机科学家在多项式时间内验证,我们认定这样的科学家的存在性为真。但是,因为P = NP,该证明y可以在多项式时间内由这样的科学家发现。但是这样的发现还没有发生(虽然这样的科学家试图发现这样的一个证明),我们得到矛盾。

千僖难题

  美国麻州的克雷(Clay)数学研究所于2000年5月24日在 巴黎 法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题。
  “千僖难题”之一:P (多项式算法)问题对NP (非多项式算法)问题
  “千僖难题”之二:霍奇(Hodge)猜想
  “千僖难题”之三:庞加莱(Poincare)猜想
  “千僖难题”之四:黎曼(Riemann)假设
  “千僖难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口
  “千僖难题”之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性
  “千僖难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
  NP完全问题排在百万美元大奖的首位,足见他的显赫地位和无穷魅力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值