HIT 2275 Number sequence

本文介绍了一种使用树状数组解决特定组合计数问题的方法。通过对树状数组的两次运用,有效地计算出所有可能的三元组(Ai<Aj>Ak)的数量,并附带了完整的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击打开HIT 2275

思路: 树状数组

分析:

1 题目要求的是总共的搭配方式,满足Ai < Aj > Ak.并且i j k不同

2 我们开两个树状数组,第一个在输入的时候就去更新。然后我们在去枚举Aj 同时维护第二个树状数组,对于AI来说就是在第二个树状数组里面求和

然后在通过第一个树状数组就可以求出Ak的个数,把结果相乘即可


代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

const int MAXN = 50010;

int n , num[MAXN];
int treeNumOne[MAXN];
int treeNumTwo[MAXN];

int lowbit(int x){
    return x&(-x);
}

int getSum(int *arr , int x){
    int sum = 0;
    while(x){
        sum += arr[x];
        x -= lowbit(x);
    }
    return sum;
}

void add(int *arr , int x , int val){
    while(x < MAXN){
         arr[x]  += val; 
         x += lowbit(x);
    }
}

long long getAns(){
    if(n < 3)
        return 0;
    long long ans = 0;
    add(treeNumTwo , num[1] , 1);
    for(int i = 2 ; i < n ; i++){
        int x = getSum(treeNumTwo , num[i]-1); 
        int y = getSum(treeNumOne , num[i]-1); 
        add(treeNumTwo , num[i] , 1);
        ans += (x)*(y-x); 
    }
    return ans;
}

int main(){
    while(scanf("%d" , &n) != EOF){
         memset(treeNumOne , 0 , sizeof(treeNumOne));
         memset(treeNumTwo , 0 , sizeof(treeNumTwo)); 
         for(int i = 1 ; i <= n ; i++){
             scanf("%d" , &num[i]);  
             num[i]++;
             add(treeNumOne , num[i] , 1);
         }
         printf("%lld\n" , getAns());
    }
    return 0;
}



#include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include <time.h> // 页表项结构 typedef struct { int page_number; // 页号 int reference; // 引用位(R) int modified; // 修改位(M) } PageEntry; // 时钟算法数据结构 typedef struct { PageEntry *frames; // 物理内存帧 int frame_count; // 帧数 int hand; // 时钟指针位置 } EnhancedClock; // 初始化时钟算法 EnhancedClock* init_enhanced_clock(int frame_count) { EnhancedClock *clock = (EnhancedClock*)malloc(sizeof(EnhancedClock)); if (!clock) { fprintf(stderr, "内存分配失败\n"); exit(EXIT_FAILURE); } clock->frames = (PageEntry*)malloc(frame_count * sizeof(PageEntry)); if (!clock->frames) { fprintf(stderr, "内存分配失败\n"); free(clock); exit(EXIT_FAILURE); } // 初始化所有帧为无效 for (int i = 0; i < frame_count; i++) { clock->frames[i].page_number = -1; // -1表示无效页 clock->frames[i].reference = 0; clock->frames[i].modified = 0; } clock->frame_count = frame_count; clock->hand = 0; return clock; } // 释放时钟算法资源 void free_enhanced_clock(EnhancedClock *clock) { if (clock) { if (clock->frames) free(clock->frames); free(clock); } } // 查找页号是否存在于内存中 bool find_page(EnhancedClock *clock, int page_number) { for (int i = 0; i < clock->frame_count; i++) { if (clock->frames[i].page_number == page_number) { clock->frames[i].reference = 1; // 设置引用位 return true; } } return false; } // 置换页面 void replace_page(EnhancedClock *clock, int page_number, int modified) { while (1) { // 第一遍扫描:寻找(R=0, M=0) for (int i = 0; i < clock->frame_count; i++) { int index = (clock->hand + i) % clock->frame_count; if (clock->frames[index].reference == 0 && clock->frames[index].modified == 0) { // 置换该页面 clock->frames[index].page_number = page_number; clock->frames[index].reference = 1; clock->frames[index].modified = modified; clock->hand = (index + 1) % clock->frame_count; return; } } // 第二遍扫描:寻找(R=0, M=1) for (int i = 0; i < clock->frame_count; i++) { int index = (clock->hand + i) % clock->frame_count; if (clock->frames[index].reference == 0 && clock->frames[index].modified == 1) { // 置换该页面 clock->frames[index].page_number = page_number; clock->frames[index].reference = 1; clock->frames[index].modified = modified; clock->hand = (index + 1) % clock->frame_count; return; } } // 所有页面的R位都为1,清除所有R位 for (int i = 0; i < clock->frame_count; i++) { clock->frames[i].reference = 0; } } } // 访问页面 bool access_page(EnhancedClock *clock, int page_number, int modified) { // 检查页面是否已在内存中 if (find_page(clock, page_number)) { return true; // 页面命中 } // 页面缺失,需要置换 replace_page(clock, page_number, modified); return false; } // 模拟页面访问序列 void simulate(EnhancedClock *clock, int *page_sequence, int *modified_sequence, int sequence_length) { int page_faults = 0; printf("页面访问序列模拟:\n"); printf("步骤\t页号\t修改位\t操作\t页框状态\n"); printf("--------------------------------------------------------\n"); for (int i = 0; i < sequence_length; i++) { int page = page_sequence[i]; int modified = modified_sequence[i]; bool hit = access_page(clock, page, modified); printf("%d\t%d\t%d\t%s\t", i+1, page, modified, hit ? "命中" : "缺页"); // 打印当前页框状态 for (int j = 0; j < clock->frame_count; j++) { if (clock->frames[j].page_number != -1) printf("[%d:%d%d] ", clock->frames[j].page_number, clock->frames[j].reference, clock->frames[j].modified); else printf("[--] "); } printf("\n"); if (!hit) page_faults++; } printf("--------------------------------------------------------\n"); printf("总访问次数: %d\n", sequence_length); printf("缺页次数: %d\n", page_faults); printf("缺页率: %.2f%%\n", (float)page_faults / sequence_length * 100); } int main() { srand(time(NULL)); // 初始化随机数种子 // 测试示例1:小规模测试 printf("===== 测试示例1:小规模测试 =====\n"); int frame_count = 3; int page_sequence1[] = {1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5}; int modified_sequence1[] = {0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0}; int sequence_length1 = sizeof(page_sequence1) / sizeof(page_sequence1[0]); EnhancedClock *clock = init_enhanced_clock(frame_count); simulate(clock, page_sequence1, modified_sequence1, sequence_length1); free_enhanced_clock(clock); // 测试示例2:随机序列测试 printf("\n\n===== 测试示例2:随机序列测试 =====\n"); frame_count = 5; int sequence_length2 = 20; int *page_sequence2 = (int*)malloc(sequence_length2 * sizeof(int)); int *modified_sequence2 = (int*)malloc(sequence_length2 * sizeof(int)); // 生成随机测试序列 for (int i = 0; i < sequence_length2; i++) { page_sequence2[i] = rand() % 10 + 1; // 1-10的随机页号 modified_sequence2[i] = rand() % 2; // 0或1的随机修改位 } clock = init_enhanced_clock(frame_count); simulate(clock, page_sequence2, modified_sequence2, sequence_length2); free_enhanced_clock(clock); free(page_sequence2); free(modified_sequence2); return 0; }分析给段增强型时钟算法代码,给出它的流程图
最新发布
05-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值