1143. Lowest Common Ancestor (30)

1143. Lowest Common Ancestor (30)

#include <bits/stdc++.h>
using namespace std;
struct TreeNode
{
    int val;
    TreeNode *left,*right;
    TreeNode(int v):val(v),left(NULL),right(NULL){}
};
int pre[10000+32],ino[10000+32];
TreeNode * build(int preL,int preR,int inoL,int inoR)
{
    if(preL>preR) return NULL;
    int e=pre[preL],idx=inoL;
    while(idx<=inoR&&e!=ino[idx]) ++idx;
    TreeNode *r=new TreeNode(e);
    r->left=build(preL+1,preL+1+idx-1-inoL,inoL,idx-1);
    r->right=build(preR+idx+1-inoR,preR,idx+1,inoR);
    return r;
}
TreeNode *search(TreeNode *r,int e)
{
    while(r){
        if(e<r->val) r=r->left;
        else if(e>r->val) r=r->right;
        else return r;
    }
    return r;
}
TreeNode *LCA(TreeNode *r,TreeNode *px,TreeNode *py)
{
    while((r->val-px->val)*(r->val-py->val)>0){
        r=(r->val<px->val)?r->right:r->left;
    }
    return r;
}
int main()
{
    int m,n;
    scanf("%d %d",&m,&n);
    for(int i=0;i<n;++i){
        scanf("%d",pre+i);
        ino[i]=pre[i];
    }
    sort(ino,ino+n);
    TreeNode *r=build(0,n-1,0,n-1);
    while(m--){
        int x,y;
        scanf("%d %d",&x,&y);
        TreeNode *px=search(r,x),*py=search(r,y);
        if(!px&&!py) printf("ERROR: %d and %d are not found.\n",x,y);
        else if(!(px&&py)) printf("ERROR: %d is not found.\n",px?y:x);
        else{
            TreeNode *res=LCA(r,px,py);
            if(res==px) printf("%d is an ancestor of %d.\n",px->val,py->val);
            else if(res==py) printf("%d is an ancestor of %d.\n",py->val,px->val);
            else printf("LCA of %d and %d is %d.\n",px->val,py->val,res->val);
        }
    }
    return 0;
}
以下是C#中二叉树的lowest common ancestor的源代码: ```csharp using System; public class Node { public int value; public Node left; public Node right; public Node(int value) { this.value = value; this.left = null; this.right = null; } } public class BinaryTree { public Node root; public BinaryTree() { this.root = null; } public Node LowestCommonAncestor(Node node, int value1, int value2) { if (node == null) { return null; } if (node.value == value1 || node.value == value2) { return node; } Node left = LowestCommonAncestor(node.left, value1, value2); Node right = LowestCommonAncestor(node.right, value1, value2); if (left != null && right != null) { return node; } return (left != null) ? left : right; } } public class Program { public static void Main() { BinaryTree tree = new BinaryTree(); tree.root = new Node(1); tree.root.left = new Node(2); tree.root.right = new Node(3); tree.root.left.left = new Node(4); tree.root.left.right = new Node(5); tree.root.right.left = new Node(6); tree.root.right.right = new Node(7); Node lca = tree.LowestCommonAncestor(tree.root, 4, 5); Console.WriteLine("Lowest Common Ancestor of 4 and 5: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 4, 6); Console.WriteLine("Lowest Common Ancestor of 4 and 6: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 3, 4); Console.WriteLine("Lowest Common Ancestor of 3 and 4: " + lca.value); lca = tree.LowestCommonAncestor(tree.root, 2, 4); Console.WriteLine("Lowest Common Ancestor of 2 and 4: " + lca.value); } } ``` 在上面的代码中,我们定义了一个Node类和一个BinaryTree类。我们使用BinaryTree类来创建二叉树,并实现了一个LowestCommonAncestor方法来计算二叉树中给定两个节点的最近公共祖先。 在LowestCommonAncestor方法中,我们首先检查给定节点是否为null或与给定值之一匹配。如果是,则返回该节点。否则,我们递归地在左子树和右子树上调用LowestCommonAncestor方法,并检查它们的返回值。如果左子树和右子树的返回值都不为null,则当前节点是它们的最近公共祖先。否则,我们返回非null的那个子树的返回值。 在Main方法中,我们创建了一个二叉树,并测试了LowestCommonAncestor方法的几个不同输入。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值