JUC 笔记 9

1. CountdownLatch

用来进行线程同步协作,等待所有线程完成倒计时。
其中构造参数用来初始化等待计数值,await() 用来等待计数归零,countDown() 用来让计数减一

示例1

public static void main(String[] args) throws InterruptedException {
    CountDownLatch latch = new CountDownLatch(3);
    
    new Thread(() -> {
        log.debug("begin...");
        sleep(1);
        latch.countDown();
        log.debug("end...{}", latch.getCount());
    }).start();
    
    new Thread(() -> {
        log.debug("begin...");
        sleep(2);
        latch.countDown();
        log.debug("end...{}", latch.getCount());
    }).start();
    
    new Thread(() -> {
        log.debug("begin...");
        sleep(1.5);
        latch.countDown();
        log.debug("end...{}", latch.getCount());
    }).start();
    
    log.debug("waiting...");
    latch.await();
    log.debug("wait end...");
}

结果

18:44:00.778 c.TestCountDownLatch [main] - waiting... 
18:44:00.778 c.TestCountDownLatch [Thread-2] - begin... 
18:44:00.778 c.TestCountDownLatch [Thread-0] - begin... 
18:44:00.778 c.TestCountDownLatch [Thread-1] - begin... 
18:44:01.782 c.TestCountDownLatch [Thread-0] - end...2 
18:44:02.283 c.TestCountDownLatch [Thread-2] - end...1 
18:44:02.782 c.TestCountDownLatch [Thread-1] - end...0 
18:44:02.782 c.TestCountDownLatch [main] - wait end...

可以配合线程池使用,改进如下

public static void main(String[] args) throws InterruptedException {
    CountDownLatch latch = new CountDownLatch(3);
    ExecutorService service = Executors.newFixedThreadPool(4);
    
    service.submit(() -> {
        log.debug("begin...");
        sleep(1);
        latch.countDown();
        log.debug("end...{}", latch.getCount());
    });
    
    service.submit(() -> {
        log.debug("begin...");
        sleep(1.5);
        latch.countDown();
        log.debug("end...{}", latch.getCount());
    });
    
    service.submit(() -> {
        log.debug("begin...");
        sleep(2);
        latch.countDown();
        log.debug("end...{}", latch.getCount());
    });
    
    service.submit(()->{
        try {
            log.debug("waiting...");
            latch.await();
            log.debug("wait end...");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    });
    
}

输出

18:52:25.831 c.TestCountDownLatch [pool-1-thread-3] - begin... 
18:52:25.831 c.TestCountDownLatch [pool-1-thread-1] - begin... 
18:52:25.831 c.TestCountDownLatch [pool-1-thread-2] - begin... 
18:52:25.831 c.TestCountDownLatch [pool-1-thread-4] - waiting... 
18:52:26.835 c.TestCountDownLatch [pool-1-thread-1] - end...2 
18:52:27.335 c.TestCountDownLatch [pool-1-thread-2] - end...1 
18:52:27.835 c.TestCountDownLatch [pool-1-thread-3] - end...0 
18:52:27.835 c.TestCountDownLatch [pool-1-thread-4] - wait end...

* 应用之同步等待多线程准备完毕

AtomicInteger num = new AtomicInteger(0);

ExecutorService service = Executors.newFixedThreadPool(10, (r) -> {
    return new Thread(r, "t" + num.getAndIncrement());
});

CountDownLatch latch = new CountDownLatch(10);

String[] all = new String[10];
Random r = new Random();
for (int j = 0; j < 10; j++) {
    int x = j;
    service.submit(() -> {
        for (int i = 0; i <= 100; i++) {
            try {
                Thread.sleep(r.nextInt(100));
            } catch (InterruptedException e) {
            }
            all[x] = Thread.currentThread().getName() + "(" + (i + "%") + ")";
            System.out.print("\r" + Arrays.toString(all));
        }
        latch.countDown();
    });
}

latch.await();
System.out.println("\n游戏开始...");
service.shutdown();

结果

//中间输出
[t0(52%), t1(47%), t2(51%), t3(40%), t4(49%), t5(44%), t6(49%), t7(52%), t8(46%), t9(46%)] 
//最后输出
[t0(100%), t1(100%), t2(100%), t3(100%), t4(100%), t5(100%), t6(100%), t7(100%), t8(100%), t9(100%)] 
游戏开始... 

* 应用之同步等待多个远程调用结束

@RestController
public class TestCountDownlatchController {
    @GetMapping("/order/{id}")
    public Map<String, Object> order(@PathVariable int id) {
        HashMap<String, Object> map = new HashMap<>();
        map.put("id", id);
        map.put("total", "2300.00");
        sleep(2000);
        return map;
    }
    
    @GetMapping("/product/{id}")
    public Map<String, Object> product(@PathVariable int id) {
        HashMap<String, Object> map = new HashMap<>();
        if (id == 1) {
            map.put("name", "小爱音箱");
            map.put("price", 300);
        } else if (id == 2) {
            map.put("name", "小米手机");
            map.put("price", 2000);
        }
        map.put("id", id);
        sleep(1000);
        return map;
    }
    
    @GetMapping("/logistics/{id}")
    public Map<String, Object> logistics(@PathVariable int id) {
        HashMap<String, Object> map = new HashMap<>();
        map.put("id", id);
        map.put("name", "中通快递");
        sleep(2500);
        return map;
    }
    
    private void sleep(int millis) {
        try {
            Thread.sleep(millis);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

rest 远程调用

RestTemplate restTemplate = new RestTemplate();
log.debug("begin");
ExecutorService service = Executors.newCachedThreadPool();
CountDownLatch latch = new CountDownLatch(4);

Future<Map<String,Object>> f1 = service.submit(() -> {
    Map<String, Object> r =
        restTemplate.getForObject("http://localhost:8080/order/{1}", Map.class, 1);
    latch.countDown();
    return r;
});
Future<Map<String, Object>> f2 = service.submit(() -> {
    Map<String, Object> r =
        restTemplate.getForObject("http://localhost:8080/product/{1}", Map.class, 1);
    latch.countDown();
    return r;
});
Future<Map<String, Object>> f3 = service.submit(() -> {
    Map<String, Object> r =
        restTemplate.getForObject("http://localhost:8080/product/{1}", Map.class, 2);
    latch.countDown();
    return r;
});
Future<Map<String, Object>> f4 = service.submit(() -> {
    Map<String, Object> r =
        restTemplate.getForObject("http://localhost:8080/logistics/{1}", Map.class, 1);
    latch.countDown();
    return r;
});
System.out.println(f1.get());
System.out.println(f2.get());
System.out.println(f3.get());
System.out.println(f4.get());

latch.await();
log.debug("执行完毕");
service.shutdown();

这里不用 CountDownLatch;,应该也可以,future#get本来就是阻塞的

执行结果

19:51:39.711 c.TestCountDownLatch [main] - begin 
{total=2300.00, id=1} 
{price=300, name=小爱音箱, id=1} 
{price=2000, name=小米手机, id=2} 
{name=中通快递, id=1} 
19:51:42.407 c.TestCountDownLatch [main] - 执行完毕

2.CyclicBarrier

[ˈsaɪklɪk ˈbæriɚ] 循环栅栏,用来进行线程协作,等待线程满足某个计数。构造时设置『计数个数』,每个线程执行到某个需要“同步”的时刻调用 await() 方法进行等待,当等待的线程数满足『计数个数』时,继续执行.

CyclicBarrier cb = new CyclicBarrier(2); // 个数为2时才会继续执行

new Thread(()->{
    System.out.println("线程1开始.."+new Date());
    try {
        cb.await(); // 当个数不足时,等待
    } catch (InterruptedException | BrokenBarrierException e) {
        e.printStackTrace();
    }
    System.out.println("线程1继续向下运行..."+new Date());
}).start();

new Thread(()->{
    System.out.println("线程2开始.."+new Date());
    try { 
        Thread.sleep(2000); 
    } catch (InterruptedException e) {
    }
    try {
        cb.await(); // 2 秒后,线程个数够2,继续运行
    } catch (InterruptedException | BrokenBarrierException e) {
        e.printStackTrace();
    }
    System.out.println("线程2继续向下运行..."+new Date());
}).start();

注意 CyclicBarrier 与 CountDownLatch 的主要区别在于 CyclicBarrier 是可以重用的, CyclicBarrier 可以被比喻为『人满发车』

### 关于JUC (Java Util Concurrency) 的概述 并发编程中的同步机制对于多线程环境下的数据一致性至关重要。`ConcurrentHashMap` 是 `Hashtable` 和 `synchronizedMap` 的替代品,在高并发场景下性能更好[^2]。 #### ConcurrentHashMap的工作原理 在 JDK 1.7 中,`ConcurrentHashMap` 使用分段数组加链表的方式存储键值对,并通过 `ReentrantLock` 锁定整个哈希桶数组的一部分来控制并发访问;而在 JDK 1.8 及之后版本里,则采用了类似于 `HashMap` 的设计——即当遇到哈希碰撞时采用链表或者红黑树结构保存溢出的数据项,不过不同之处在于其利用 CAS 操作以及 Synchronizer 来确保线程安全性的同时提高了并行度。 #### 原子操作与锁优化 原子变量类提供了无锁定且高效的算法实现方式,比如 `AtomicInteger`, `AtomicLong` 等可以用于计数器等简单数值更新场合。此外还有诸如读写锁(`ReadWriteLock`)、信号量(`Semaphore`)等一系列工具可以帮助开发者更好地处理复杂的业务逻辑需求。 #### 弱引用的应用 除了上述内容外,在某些特殊情况下可能还会涉及到对象生命周期管理方面的话题,例如使用弱引用来追踪那些不再被强引用指向但仍可作为缓存使用的实例。需要注意的是,这类对象会在下次垃圾收集过程中被清理掉[^3]。 ```java import java.util.concurrent.locks.ReentrantLock; // 创建一个显式的重入锁 final ReentrantLock lock = new ReentrantLock(); lock.lock(); // 获取锁 try { // 访问共享资源... } finally { lock.unlock(); // 释放锁 } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值