懒省事的小明
时间限制:3000 ms | 内存限制:65535 KB
难度:3
描述
小明很想吃果子,正好果园果子熟了。在果园里,小明已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。小明决定把所有的果子合成一堆。 因为小明比较懒,为了省力气,小明开始想点子了:
每一次合并,小明可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。小明在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以小明在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使小明耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以小明总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。
输入
第一行输入整数N(0<N<=10)表示测试数据组数。接下来每组测试数据输入包括两行,第一行是一个整数n(1<=n<=12000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。
输出
每组测试数据输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。
样例输入
1 3 1 2 9
样例输出
15
提示:
题目大意:排序,选出最小的两个数相加,相加的和成为其中的一个元素,然后再进行排序,,,,,如此循环知道合并为一捆
因为排序需要多次,可能会出现超时现象。。。本题可以运用优先队列,其特点是:自动排序,所以不会出现超时现象
#include<cstdio>
#include<iostream>
#include<queue>
using namespace std;
int main()
{
int N;
cin>>N;
while(N--)
{
long long n,i,sum=0,s,t;
cin>>n;
priority_queue<long long,vector<long long>,greater<long long> >q;
for(i=0;i<n;i++)
{
cin>>s;
q.push(s);
}
while(q.size()!=1)
{
t=q.top();
q.pop();
t=t+q.top();
sum=sum+t;
q.pop();
q.push(t);
}
cout<<sum<<endl;
}
return 0;
}