tf estimator debug

Traceback (most recent call last): File "C:\Users\pfliu\Desktop\CV_Algorithm\machine_learning\linear_regression.py", line 28, in <module> r2_ridge = cross_val_score(ridge, x_train, y_train, scoring='r2', cv=10) File "C:\Apps\Anaconda3\envs\tf\lib\site-packages\sklearn\model_selection\_validation.py", line 515, in cross_val_score cv_results = cross_validate( File "C:\Apps\Anaconda3\envs\tf\lib\site-packages\sklearn\model_selection\_validation.py", line 285, in cross_validate _warn_or_raise_about_fit_failures(results, error_score) File "C:\Apps\Anaconda3\envs\tf\lib\site-packages\sklearn\model_selection\_validation.py", line 367, in _warn_or_raise_about_fit_failures raise ValueError(all_fits_failed_message) ValueError: All the 10 fits failed. It is is very likely that your model is misconfigured. You can try to debug the error by setting error_score='raise'. Below are more details about the failures: -------------------------------------------------------------------------------- 10 fits failed with the following error: Traceback (most recent call last): File "C:\Apps\Anaconda3\envs\tf\lib\site-packages\sklearn\model_selection\_validation.py", line 686, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "C:\Apps\Anaconda3\envs\tf\lib\site-packages\sklearn\linear_model\_ridge.py", line 1130, in fit return super().fit(X, y, sample_weight=sample_weight) File "C:\Apps\Anaconda3\envs\tf\lib\site-packages\sklearn\linear_model\_ridge.py", line 889, in fit self.coef_, self.n_iter_ = _ridge_regression( File "C:\Apps\Anaconda3\envs\tf\lib\site-packages\sklearn\linear_model\_ridge.py", line 699, in _ridge_regression coef = _solve_cholesky(X, y, alpha) File "C:\Apps\Anaconda3\envs\tf\lib\site-packages\sklearn\linear_model\_ridge.py", line 212, in _solve_cholesky return linalg.solve(A, Xy, sym_pos=True, overwrite_a=True).T TypeError: solve() got an unexpected keyword argument 'sym_pos'
最新发布
11-28
### `ValueError: All the 10 fits failed.` 错误 此错误表明在交叉验证的 10 次拟合过程中,所有的拟合都失败了。常见原因及解决办法如下: - **数据问题**:数据中可能存在缺失值、无穷大值或数据类型不兼容等情况。可以通过以下代码检查并处理缺失值: ```python import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler # 假设 x_train 和 y_train 是训练数据 # 检查是否有缺失值 if np.isnan(x_train).any() or np.isnan(y_train).any(): # 可以选择删除包含缺失值的行 x_train = pd.DataFrame(x_train).dropna().values y_train = pd.DataFrame(y_train).dropna().values # 或者使用均值、中位数等填充缺失值 # from sklearn.impute import SimpleImputer # imputer = SimpleImputer(strategy='mean') # x_train = imputer.fit_transform(x_train) # 检查是否有无穷大值 if np.isinf(x_train).any() or np.isinf(y_train).any(): x_train = np.nan_to_num(x_train) y_train = np.nan_to_num(y_train) # 数据标准化 scaler = StandardScaler() x_train = scaler.fit_transform(x_train) ``` - **模型参数问题**:岭回归的 `alpha` 参数可能设置得不合理。可以尝试调整 `alpha` 的范围,例如选择更小的值。 ```python alpha_range = np.arange(0.1, 10, 0.1) ``` ### `TypeError: solve() got an unexpected keyword argument 'sym_pos'` 错误 这个错误通常与符号计算相关,与当前比较线性回归和岭回归的代码并无直接关联。它可能是在其他代码中调用 `solve()` 函数时传入了不支持的参数 `sym_pos` 导致的。需要检查调用 `solve()` 函数的代码部分,移除 `sym_pos` 参数或者修改为支持的参数。例如: ```python # 假设原来的代码是这样 # result = solve(equation, variables, sym_pos=True) # 修改为 result = solve(equation, variables) ``` ### 修正后的完整代码示例 ```python import numpy as np from sklearn.linear_model import Ridge, LinearRegression from sklearn.model_selection import cross_val_score, train_test_split from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt from sklearn.datasets import make_regression # 生成示例数据 x, y = make_regression(n_samples=100, n_features=10, random_state=42) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) # 数据预处理 scaler = StandardScaler() x_train = scaler.fit_transform(x_train) alpha_range = np.arange(0.1, 10, 0.1) re, lr = [], [] for i in alpha_range: ridge = Ridge(alpha=i) linear = LinearRegression() r2_ridge = cross_val_score(ridge, x_train, y_train, scoring='r2', cv=10) r2_linear = cross_val_score(linear, x_train, y_train, scoring='r2', cv=10) re = np.append(re, [np.mean(r2_ridge)]) lr = np.append(lr, [np.mean(r2_linear)]) plt.figure() plt.plot(alpha_range, re, c='black', label='ridge') plt.plot(alpha_range, lr, c='red', label='linear') plt.legend() plt.show() ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值