通过tf.convert_to_tensor 函数和 numpy api,创建测试用例 对模型结构进行测试
```python
np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
```python
import matplotlib as mpl
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
print(tf.__version__)
print(sys.version_info)
for module in mpl, np, pd, sklearn, tf, keras:
print(module.__name__, module.__version__)
## 定义模型结构
class Encoder(keras.Model):
def __init__(self, vocab_size, embedding_units, encoding_units, batch_size):
super().__init__()
self.batch_size = batch_size
self.encoding_units = encoding_units
self.embedding = keras.layers.Embedding(vocab_size, embedding_units)
self.gru = keras.layers.GRU(self.encoding_units,
return_sequences=True,
return_state=True,
recurrent_initializer='glorot_uniform')
def call(self, x, hidden):
x = self.embedding(x)
output, state = self.gru(x, initial_state=hidden)
return output, state
def initialize_hidden_state(self):
return tf.zeros((self.batch_size, self.encoding_units))
if __name__ == "__main__":
input_vocab_size = 9394
embedding_units = 256
units = 1024
batch_size = 64
epochs = 20
x = tf.convert_to_tensor(np.random.randint(0,9393,(64, 16)), dtype=tf.int32)
print(x.shape)
encoder = Encoder(input_vocab_size, embedding_units, units, batch_size)
sample_hidden = encoder.initialize_hidden_state()
sample_output, sample_hidden = encoder(x, sample_hidden)
print(sample_output.shape, sample_hidden.shape)

该博客展示了如何利用TensorFlow的`tf.convert_to_tensor`函数和Numpy API来创建测试用例,对一个基于GRU的编码器模型进行结构测试。首先,生成随机整数数组作为输入,然后定义并初始化Encoder类,该类包含一个嵌入层和一个GRU层。在主函数中,创建了测试输入,并通过模型进行前向传播,验证了输出和隐藏状态的形状。
230

被折叠的 条评论
为什么被折叠?



