PTA甲 1104. Sum of Number Segments (20)

本文介绍了一种高效算法,用于计算给定正数序列中所有连续子序列(段)数值之和的方法,并通过示例解释了算法原理及实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1104. Sum of Number Segments (20)

时间限制
200 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CAO, Peng

Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence {0.1, 0.2, 0.3, 0.4}, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4).

Now given a sequence, you are supposed to find the sum of all the numbers in all the segments. For the previous example, the sum of all the 10 segments is 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N, the size of the sequence which is no more than 105. The next line contains N positive numbers in the sequence, each no more than 1.0, separated by a space.

Output Specification:

For each test case, print in one line the sum of all the numbers in all the segments, accurate up to 2 decimal places.

Sample Input:
4
0.1 0.2 0.3 0.4 
Sample Output:

5.00

一道很有意思的小题一开始没有考虑复杂度直接用了n方的,没想到后面两个数据过不了。后来观察规律,发现数组中数出现的次数是有规律的所以在输入的过程中就可以同时进行求和了。

ac代码

#include <stdio.h>


double a[100005];


int main()
{
int i,j,n;
double sum=0;


scanf("%d",&n);
for(i=0;i<n;i++)
{
scanf("%lf",&a[i]);
double sumTmp = a[i] * (n - i) *(i + 1) ;  
        sum += sumTmp ;  
}



printf("%.2lf",sum);


return 0;


}

15分代码

#include <stdio.h>


float a[100005];


int main()
{
int i,j,n;
float sum=0,last=0,ans=0;




scanf("%d",&n);
for(i=0;i<n;i++)
{
scanf("%f",&a[i]);
}


for(i=0;i<n;i++)
{
ans=0;
for(j=i;j<n;j++)
{
ans+=a[j];
sum+=ans;
}
}



printf("%.2f",sum);


return 0;


}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值