使用多线程加速实时视频流处理的思路

本文讨论了在机器视觉中,如何通过使用线程池实现视频流的并行处理,解决因图像处理导致帧率下降和性能问题,提高视频输出帧率并控制内存占用。
部署运行你感兴趣的模型镜像

初次接触机器视觉的小伙伴应该都会遇到这种情况,明明摄像头输出的画面是 30 fps 的,但对每一帧图像进行畸变矫正或者是一些图像处理后,视频帧数降低到了不到 10 fps!还伴随出现丢帧或者是播放缓慢,内存占用越来越多。

最近想到了一种利用线程池去并行处理视频流的方法,该方法在处理耗时高于视频帧产生间隔时,能有效提高最终视频输出的帧率。

全文:

https://www.bilibili.com/read/cv25822425

您可能感兴趣的与本文相关的镜像

Qwen3-8B

Qwen3-8B

文本生成
Qwen3

Qwen3 是 Qwen 系列中的最新一代大型语言模型,提供了一整套密集型和专家混合(MoE)模型。基于广泛的训练,Qwen3 在推理、指令执行、代理能力和多语言支持方面取得了突破性进展

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值