关于贝叶斯的一些介绍
逆向概率
所谓「逆向概率」是相对「正向概率」而言。正向概率的问题很容易理解,如「假设袋子里面有 N 个白球,M 个黑球,你伸手进去摸一把,摸出黑球的概率是多大」。但是实际场景中,这个问题往往相反:「如果事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一些球,观察这些取出来的球的颜色,我们可以对袋子里面黑白球的比例作出什么样的推测」。贝叶斯推断与其他统计学推断方法截然不同。它建立在主观判断的基础上,也就是说,你可以不需要客观证据,先估计一个值,然后根据实际结果不断修正。
贝叶斯推断与其他统计学推断方法截然不同。它建立在主观判断的基础上,也就是说,你可以不需要客观证据,先估计一个值,然后根据实际结果不断修正。
贝叶斯定理(Bayes’ theorem)告知我们如何利用新证据修改已有的看法。在事件 B 出现的前提下,事件 A 出现的概率,等于 A 和 B 都出现的概率,除以 B 出现的概率。用公式表示就是:
概念
- 先验概率:在考虑观测数据前,能表达不确定量
p
的概率分布 - 后验概率:在考虑和给出相关证据或数据后所得到的条件概率
- 条件概率:事件
A
在另外一个事件B
已经发生条件下的发生概