Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
2,3,6,7
and target 7
, A solution set is:
[7]
[2, 2, 3]
Need to pay special attention to the condition that "The number can be used repeatedly", we thus use a pointer to pointer to the value used and not adding one when being used in the next level.
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
void combinationSum(vector<int>& candidates, int start, vector< vector<int> >& res, vector<int>& path, int& sum, int target) {
if(sum > target) return;
if(sum == target) {
res.push_back(path);
}
for(int i = start; i < candidates.size(); ++i) {
sum += candidates[i];
path.push_back(candidates[i]);
combinationSum(candidates, i, res, path, sum, target);
path.pop_back();
sum -= candidates[i];
}
}
vector< vector<int> > combinationSum(vector<int>& candidates, int target) {
vector< vector<int> > res;
vector<int> path;
sort(candidates.begin(), candidates.end());
int sum = 0;
combinationSum(candidates, 0, res, path, sum, target);
return res;
}
int main(void) {
vector<int> candidates{2, 3, 6, 7};
vector< vector<int> > res = combinationSum(candidates, 7);
for(int i = 0; i < res.size(); ++i) {
for(int j = 0; j < res[0].size(); ++j) {
cout << res[i][j] << endl;
}
cout << endl;
}
}