You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Classical DP problem
int climbStairs(int n) {
vector<int> dp(n + 1, 0);
dp[1] = 1;
dp[0] = 1;
for(int i = 2; i <= n; ++i) {
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
A much better version.
int climbStairs(int n) {
int cn1 = 1;
int cn2 = 2;
if(n <= 0) return 0; if(n == 1) return 1;
for(int i = 3; i <= n; ++i) {
cn1 += cn2;
swap(cn1, cn2);
}
return cn2;
}

本文探讨了经典的爬楼梯问题,提供了两种解决方案:一种使用动态规划的经典方法,另一种则是更为简洁高效的迭代方法。通过这两种方法,展示了如何计算出达到楼梯顶部的不同方式的数量。
756

被折叠的 条评论
为什么被折叠?



