leetcode 台阶_LeetCode 70. Climbing Stairs(跳台阶问题)

本文介绍了如何运用动态规划解决LeetCode中的70题——跳台阶问题,即青蛙一次可以跳1级或2级台阶,求解跳上n级台阶的不同跳法数量。通过分析得出状态转移方程,并给出自底向上的迭代算法实现,对于扩展问题,即青蛙可以跳1到n级台阶,同样采用动态规划求解,最终得出递推式并给出源码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Note : Given n will be a positive integer.

本题对应于《剑指offer》P75的跳台阶问题:

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

首先我们考虑最简单的情况。如果只有1级台阶,那显然只有一种跳法。如果有2级台阶,那就有两种跳法了:一种是分两次跳,每次跳1级;另外一种就是一次跳2级。

接着我们再来讨论一般的情况。把n级台阶时的跳法看成是n的函数f(n)。当n>2时,第一次跳的时候有两种不同的选择:

第一次只跳1级,此时跳上n级台阶的跳法数目等于后面剩下的n-1级台阶的跳法数目,即f(n-1)

第一次跳2级,此时跳上n级台阶的跳法数目等于后面剩下的n-2级台阶的跳法数目,即f(n-2)

因此n级台阶的不同跳法的总数 f(n) = f(n-1) + f(n-2)

上面的分析过程,我们用到了动态规划的方法,找到了状态转移方程,不难看出这实际上就是一个类斐波那契数列,只是初始条件与传统的斐波那契数列略有不同,这里f(2)=2。

关于斐波那契数列,我在之前的文章中已经详细分析了这类问题的三种计算机解法:自上而下的递归实现太耗时,转化为特征矩阵的乘方又太复杂,所以一般使用自底向上的迭代算法。

应用自底向上的迭代算法求解本题的源码如下,其时间复杂度为O(n)

public class Solution {

public int climbStairs(int n) {

if (n <= 2) {

return n;

}

int fibCurrent = 0, fibOneBack = 2, fibTwoBack = 1;

for (int i = 3; i <= n; i++) {

fibCurrent = fibOneBack + fibTwoBack;

fibTwoBack = fibOneBack;

fibOneBack = fibCurrent;

}

return fibCurrent;

}

}

系统准备一个函数,是常数项时间复杂度比较大的事情,而且系统递归栈的大小也是有限的,所以工程上的代码,很少使用递归。对于一种算法的递归版本,往往可以通过自己维护一个栈或者迭代的方式,将其改写成非递归版本进行优化。

《剑指offer》上还对本题进行了如下扩展

一只青蛙一次可以跳上1级台阶,也可以跳上2 级,……,也可以跳上n级,此时该青蛙跳上一个n级的台阶总共有多少种跳法?

首先我们仍然考虑最简单的情况。如果只有1级台阶,那显然只有一种跳法。如果有2级台阶,那就有两种跳法了:一种是分两次跳,每次跳1级;另外一种就是一次跳2级。

接着我们再来讨论一般的情况。把n级台阶时的跳法看成是n的函数f(n)。当n>2时,第一次跳的时候有n种不同的选择:

第一次只跳1级,此时跳上n级台阶的跳法数目等于后面剩下的n-1级台阶的跳法数目,即f(n-1);

第一次跳2级,此时跳上n级台阶的跳法数目等于后面剩下的n-2级台阶的跳法数目,即f(n-2);

第一次跳3级,此时跳上n级台阶的跳法数目等于后面剩下的n-3级台阶的跳法数目,即f(n-3);

......;

第一次跳n-1级,此时跳上n级台阶的跳法数目等于后面仅剩的1级台阶的跳法数目,即f(1);

从初始位置直接跳n级,这也对应了一种跳法

综上所述,n级台阶的不同跳法的总数 f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(1) + 1

把n-1带入上面的递推式得 f(n-1) = f(n-2) + f(n-3) + ... + f(1) + 1

所以最终的递推式为 f(n) = 2 * f(n-1)

应用自底向上的迭代算法求解本题的源码如下:

public class Solution {

public int climbStairs(int n) {

int result = 1;

if (n == 1) {

return result;

}

for (int i = 2; i <= n; i++) {

result *= 2;

}

return result;

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值