Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container.
Classical two pointers problem
#include <vector>
#include <climits>
#include <iostream>
using namespace std;
int containMostWater(vector<int>& height) {
if(height.size() <= 1) return 0;
int i = 0;
int j = height.size() - 1;
int maxWater = 0;
while(i < j) {
int minHeight = min(height[i], height[j]);
maxWater = max(maxWater, minHeight * (j - i));
if(height[i] > height[j]) j--;
else i++;
}
return maxWater;
}
int main(void) {
vector<int> height{2, 3, 4, 3, 2};
int maxWater = containMostWater(height);
cout << maxWater << endl;
}
本文介绍了一个经典的两指针算法问题:给定一系列垂直线,每条线的长度由数组给出,求能够组成的容器中能盛放的最大水量。通过双指针技巧,逐步移动较短的边界,有效地解决了这个问题。
1114

被折叠的 条评论
为什么被折叠?



