LeetCode 62. Unique Paths

本文介绍了一种计算机器人从网格左上角到右下角所有唯一路径数量的算法。通过动态规划方法,文章展示了两种实现方式:一种使用二维矩阵存储中间结果;另一种采用滚动数组进一步优化空间复杂度。此外,还探讨了一个变化问题——从指定位置出发,在限定步数内到达起点的所有可能路径数量。

Question:

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


This is a classical DP problem. The most important part is to initialize the status correctly.

  int uniquePaths(int m, int n) {
    vector< vector<int> > map(m, vector<int>(n, 0));

    // initialize the matrix
    for(int i = 0; i < m; ++i) {
        map[i][0] = 1;  // there is one one way to go right straightly.
    }

    for(int j = 0; j < n; ++j) {
        map[0][j] = 1;  // there is one way to go down straightly
    }

    for(int i = 1; i < m; ++i) {
        for(int j = 1; j < n; ++j) {
            map[i][j] = map[i-1][j] + map[i][j-1];  // the most recent cube path is from right top and left down.
        }
    }
    return map[m-1][n-1];  // the right down conner one is the sum of the whole path.
 }

Further optimize.... Space becomes O(N) using rolling array.

int waysII(int m, int n) {
  vector<int> prev(n, 1);
  for(int i = 1; i < m; ++i) {
    vector<int> curr(n, 1);
    for(int j = 1; j < n; ++j) {
      curr[j]= prev[j] + curr[j-1];
    }
    prev = curr;
  }
  return prev[n - 1];
}


Variation:

 Given a N * M matrix, and the point in the rectangle (x, y). search from (x, y) to (0, 0) at K steps. Every point can go for 4 directions.
 go left, right, up, down. For example, in the following matrix

  0, 0, 0, 0, 0
  0, 0, 0, 0, 0
  0, 0, 0, 0, 0
  0, 0, 0, 0, 0
  Given (x, y) = (1, 1), k = 2, return 2.

// dfs
void pathNumber(vector< vector<int> >& matrix, int x, int y, int &count, int k) {
  if(x < 0 || x >= matrix.size() || y >= matrix[0].size() || y < 0 || matrix[x][y] == -1 || k < 0) return;
  if((x == 0) && (y == 0) && (k == 0)) {
    count++;
    return;
  }
  matrix[x][y] = -1;
  pathNumber(matrix, x - 1, y, count, k - 1);
  matrix[x][y] = 0;
  pathNumber(matrix, x + 1, y, count, k - 1);
  matrix[x][y] = 0;
  pathNumber(matrix, x, y + 1, count, k - 1);
  matrix[x][y] = 0;
  pathNumber(matrix, x, y - 1, count, k - 1);
  matrix[x][y] = 0;
}

// first thought is to use dfs.
int pathNumber(vector< vector<int> >& matrix, int x, int y, int steps) {
  if(x == 0 || y == 0) return 1;
  int count = 0;
  pathNumber(matrix, x, y, count, steps);
  return count;
}

To further optimize it, we can use 3D dynamic programming.

dp[i][j][k] = dp[i-1][j][k-1] + dp[i+1][j][k-1] + dp[i][j-1][k-1]+dp[i][j+1][k-1]. initialize: dp[0][y][k] --- 1, dp[x][0][k] = 1


Maybe, can be further optimized using 2D array.



【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)内容概要:本文提出了一种基于融合鱼鹰和柯西变异的麻雀优化算法(OCSSA)优化变分模态分解(VMD)参数,并结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的轴承故障诊断模型。该方法利用西储大学公开的轴承数据集进行验证,通过OCSSA算法优化VMD的分解层数K和惩罚因子α,有效提升信号分解精度,抑制模态混叠;随后利用CNN提取故障特征的空间信息,BiLSTM捕捉时间序列的动态特征,最终实现高精度的轴承故障分类。整个诊断流程充分结合了信号预处理、智能优化与深度学习的优势,显著提升了复杂工况下轴承故障诊断的准确性与鲁棒性。; 适合人群:具备一定信号处理、机器学习及MATLAB编程基础的研究生、科研人员及从事工业设备故障诊断的工程技术人员。; 使用场景及目标:①应用于旋转机械设备的智能运维与故障预警系统;②为轴承等关键部件的早期故障识别提供高精度诊断方案;③推动智能优化算法与深度学习在工业信号处理领域的融合研究。; 阅读建议:建议读者结合MATLAB代码实现,深入理解OCSSA优化机制、VMD参数选择策略以及CNN-BiLSTM网络结构的设计逻辑,通过复现实验掌握完整诊断流程,并可进一步尝试迁移至其他设备的故障诊断任务中进行验证与优化。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值