- 博客(8)
- 收藏
- 关注
原创 【论文笔记】CVPR2020 Interpretable and Accurate Fine-grained Recognition via Region Grouping
Contributionproposed an interpretable deep model for fine-grained visual recognition:做细粒度分类,但同时output the segmentation of object parts and the identification of their contributions towards classification,增加了模型的可解释性为了确认object parts,使用a simple prior (pr.
2020-07-12 01:32:43
2071
原创 【论文笔记】CVPR2020 A Multi-task Mean Teacher for Semi-supervised Shadow Detection
Multi-task Learning的工作:Contribuions提出了:利用更加丰富的unlabeled data利用multi-task learning来提供complementary information,让预测更准确来分别解决之前工作的问题:都需要 sufficient amount of annotated data,but annotated data are all captured in limited scenes.实验中作者发现之前的算法 ne-
2020-07-10 22:59:24
1144
原创 【论文笔记】CVPR2020 Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype Classificatio
又一篇CVPR2020的histo image的文章,cancer subtype classificationContributioncancer subtype classification 面临三个问题:tumour and non-tumour regions are mixed, patch label is unavailablestaining conditions vary greatlywhen the magnification of image changes, di
2020-07-07 23:23:14
1135
原创 【论文笔记】CVPR2020 Predicting Lymph Node Metastasis Using Histopathological Images Based on Multiple Ins
今年cvpr为什么这么多medical方向的文章,学习了新知识:multi-instance learningContribution作者解决了Predicting Lymph Node Metastasis Using Histopathological Images,由于whole slide images都太大了,所以提出了把大图分成patch来做multi-instance learning的想法。 由于没有instance-level label,作者用self-supervised的
2020-07-06 12:03:27
753
原创 【论文笔记】CVPR2020 Disentangling and Unifying Graph Convolutions for Skeleton-Based Action Recognition
使用GCN进行skeleton-based action recognitionContribution提出了两个设计:a disentangled multi-scale aggregation schemea unified spatial-temporal graph convolutional module (G3D)分别解决了两个问题:unbiased weight problem: edge weights will be biased towards closer node
2020-06-29 18:27:35
1534
4
原创 【论文笔记】CVPR2020 Skeleton-Based Action Recognition with Shift Graph Convolutional Network
用图卷积做action recogntionContribution提出了shift-GCN(spatial shift graph operations & temporal shift graph operations)that exceeds the state-of-the-art methods with more than 10× less computational cost,主要解决了过去工作的两个问题heavy computational complexity of G
2020-06-29 00:30:47
1876
原创 【论文笔记】CVPR2020 Rethinking Computer-aided Tuberculosis Diagnosis
在cvpr上少见的使用medical data的paperContributions收集了新的很大的TB dataset:Tuberculosis X-ray (TBX11K) dataset,包括:11200 X-ray ImagesImage-level annotation + TB area annotation using bounding boxesImage-level annotations include 4 classes: healthy, active TB, lat
2020-06-28 13:51:50
600
原创 【论文笔记】CVPR2020 Exploring Self-attention for Image Recognition
CVPR 2020 的一篇自注意力机制Contributionsexplore variations of self-attention and assess their effectiveness for image recognition; 按两类self-attention进行探讨:pairwise self-attention & patchwise self-attention主要结论:MethodsPairwise Self-attention乘在bet
2020-06-27 17:21:52
1514
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人