openvino:优化和部署AI推理的开源工具包
openvino 项目地址: https://gitcode.com/gh_mirrors/ope/openvino
在人工智能领域,模型的推理效率是决定应用性能的关键因素。OpenVINO™ 是一个开源工具包,旨在优化和部署深度学习推理,无论是在边缘设备还是在云端。以下是关于这个项目的详细介绍。
项目介绍
OpenVINO™ Toolkit 是由英特尔推出的一款开源工具包,它通过优化深度学习模型,提高计算机视觉、自动语音识别、自然语言处理等常见任务的推理性能。OpenVINO 支持将 TensorFlow、PyTorch 等流行框架训练的模型转换为适用于Intel®平台的优化格式,从而降低资源需求,并实现高效的部署。
项目技术分析
OpenVINO™ Toolkit 包含多个组件,其中核心组件包括 OpenVINO Model Converter (OVC)、OpenVINO™ Runtime,以及针对Intel® CPUs 和 Intel® Processor Graphics 的 CPU、GPU、多设备异构插件。这些组件共同工作,提供了从模型转换到推理执行的全流程支持。
Components
- OpenVINO™ Runtime:提供了一套 C++ 库,并包含 C 和 Python 绑定,为不同平台上的推理解决方案提供了一个统一的 API。
- Plugins:包含由 OpenVINO 团队维护的插件,用于简化在多种硬件设备上的模型加载。
- Frontends:允许从原生框架格式读取模型的 OpenVINO 前端。
- OpenVINO Model Converter (OVC):是一个跨平台的命令行工具,用于在训练和部署环境之间转换模型,并调整模型以适应目标设备的最佳执行。
- Samples:展示了基本 OpenVINO 用例的 C、C++ 和 Python 语言应用程序。
项目及技术应用场景
OpenVINO™ Toolkit 可以在各种硬件设备上进行模型推理。它支持从流行框架如 TensorFlow、ONNX、PaddlePaddle、MXNet、Caffe、Kaldi 中导入的预训练模型。以下是 OpenVINO 的几个典型应用场景:
- 计算机视觉:通过优化图像识别、目标检测等任务,提升视觉应用的性能。
- 自动语音识别:优化语音处理模型,提高语音识别的准确性和实时性。
- 自然语言处理:加速文本分析、机器翻译等任务的推理过程。
项目特点
OpenVINO™ Toolkit 具有以下显著特点:
- 广泛的支持:支持Intel®平台,包括 CPU 和 GPU,以及 ARM CPU。
- 高效的优化:通过模型转换和推理优化,提高性能并降低资源消耗。
- 灵活的部署:支持从边缘到云的多种部署选项。
- 丰富的模型库:支持100+ 开源和公共模型,适用于不同的应用场景。
支持硬件矩阵
OpenVINO™ Runtime 支持以下硬件设备:
- CPU:Intel Xeon、Intel Core、Intel Atom 以及 ARM CPU。
- GPU:Intel Processor Graphics,包括 Intel HD Graphics 和 Intel Iris Graphics。
此外,OpenVINO 还提供了多个插件,如 Auto 插件自动选择推理设备,Auto Batch 插件实现自动批处理,Hetero 插件支持异构执行,Multi 插件支持在多个设备上并行推理。
结论
OpenVINO™ Toolkit 是一个强大的开源工具包,它通过优化和部署深度学习模型,为开发人员提供了一种高效的方式来提升人工智能应用的性能。无论您是在开发计算机视觉、语音识别还是自然语言处理应用,OpenVINO 都能为您带来显著的性能提升和资源节约。通过使用 OpenVINO,您可以在Intel®平台上实现快速、高效的 AI 推理。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考