Jetson Inference 项目教程
项目地址:https://gitcode.com/gh_mirrors/je/jetson-inference
项目介绍
Jetson Inference 是一个用于 NVIDIA Jetson 设备的深度学习和实时视觉库。该项目利用 TensorRT 在 GPU 上运行优化的神经网络,支持从 C++ 或 Python 进行调用,并使用 PyTorch 进行模型训练。支持的深度学习视觉原语包括图像分类(imageNet)、目标检测(detectNet)、语义分割(segNet)、姿态估计(poseNet)和动作识别(actionNet)。此外,项目还提供了从实时摄像头流进行数据流的示例,以及支持 WebRTC 和 ROS/ROS2 的 Web 应用程序。
项目快速启动
环境准备
确保你已经安装了 NVIDIA Jetson 设备,并且已经配置好了开发环境。
克隆项目
git clone https://github.com/dusty-nv/jetson-inference.git
cd jetson-inference
构建项目
mkdir build
cd build
cmake ../
make
sudo make install
运行示例
cd jetson-inference/build/aarch64/bin
./imagenet-console.py --model=resnet18.onnx --input_blob=input_0 --output_blob=output_0 --labels=labels.txt image.jpg output.jpg
应用案例和最佳实践
图像分类
使用 imagenet-camera
示例进行实时图像分类:
./imagenet-camera.py --model=resnet18.onnx --input_blob=input_0 --output_blob=output_0 --labels=labels.txt
目标检测
使用 detectnet-camera
示例进行实时目标检测:
./detectnet-camera.py --model=ssd-mobilenet.onnx --input_blob=input_0 --output_blob=output_0 --labels=labels.txt
语义分割
使用 segnet-camera
示例进行实时语义分割:
./segnet-camera.py --model=fcn-resnet18-cityscapes-512x256.onnx --input_blob=input_0 --output_blob=output_0
典型生态项目
Jetson Nano
Jetson Nano 是 NVIDIA 推出的一款小型、功能强大的 AI 计算机,适用于入门级开发者和小型项目。Jetson Inference 项目提供了针对 Jetson Nano 的优化和示例。
TensorRT
TensorRT 是 NVIDIA 的高性能深度学习推理库,用于在生产环境中部署经过训练的神经网络模型。Jetson Inference 项目充分利用了 TensorRT 的优化能力。
PyTorch
PyTorch 是一个开源的深度学习框架,广泛用于研究和开发。Jetson Inference 项目支持使用 PyTorch 进行模型训练,并将训练好的模型部署到 Jetson 设备上。
通过以上步骤和示例,你可以快速上手 Jetson Inference 项目,并在 NVIDIA Jetson 设备上进行深度学习和实时视觉应用的开发。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考