深入解析HuggingFace扩散模型:从理论到PyTorch实现
引言:扩散模型概述
扩散模型(Diffusion Models)是当前生成式人工智能领域最引人注目的技术之一,它通过逐步去噪的过程从纯噪声生成高质量数据样本。这类模型在图像、音频和视频生成任务中取得了突破性成果,如OpenAI的DALL-E 2、Google的ImageGen等著名模型都基于扩散模型技术。
本文将基于HuggingFace提供的annotated_diffusion示例,深入解析扩散模型的核心原理,并逐步实现一个完整的扩散模型。我们将重点讨论Denoising Diffusion Probabilistic Models (DDPM)这一经典扩散模型架构。
扩散模型基本原理
扩散模型的核心思想是通过两个相互关联的过程实现数据生成:
- 前向扩散过程:这是一个固定的过程,逐步向数据添加高斯噪声,最终将数据完全转化为噪声
- 反向去噪过程:这是一个学习的过程,神经网络学习如何从噪声中逐步恢复原始数据
前向扩散过程数学描述
前向扩散过程定义为马尔可夫链,每一步都向数据添加少量高斯噪声。给定原始数据点x₀,前向过程在T个时间步中逐步生成噪声数据x₁,...,x_T:
q(xₜ|xₜ₋₁) = N(xₜ; √(1-βₜ)xₜ₋₁, βₜI)
其中βₜ是预先定义的噪声调度参数,控制每个时间步添加的噪声量。
反向去噪过程
反向过程的目标是从噪声x_T开始,逐步恢复原始数据x₀。由于直接建模p(xₜ₋₁|xₜ)非常困难,我们使用神经网络来近似这个条件分布:
pθ(xₜ₋₁|xₜ) = N(xₜ₋₁; μθ(xₜ,t), Σθ(xₜ,t))
在DDPM中,作者将方差Σθ固定为常数,只让神经网络学习均值μθ。
实现准备
在开始实现之前,我们需要安装并导入必要的Python库:
!pip install -q -U einops datasets matplotlib tqdm
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum
from einops import rearrange
from tqdm.auto import tqdm
import matplotlib.pyplot as plt
核心组件实现
1. 时间步嵌入
由于我们的网络需要处理不同时间步的噪声水平,我们需要将时间步信息编码为网络可以理解的格式:
class SinusoidalPositionEmbeddings(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, time):
device = time.device
half_dim = self.dim // 2
embeddings = math.log(10000) / (half_dim - 1)
embeddings = torch.exp(torch.arange(half_dim, device=device) * -embeddings
embeddings = time[:, None] * embeddings[None, :]
embeddings = torch.cat((embeddings.sin(), embeddings.cos()), dim=-1)
return embeddings
2. 残差块实现
残差连接有助于梯度流动,是U-Net架构的关键部分:
class Block(nn.Module):
def __init__(self, dim_in, dim_out, groups=8):
super().__init__()
self.proj = nn.Conv2d(dim_in, dim_out, 3, padding=1)
self.norm = nn.GroupNorm(groups, dim_out)
self.act = nn.SiLU()
def forward(self, x, scale_shift=None):
x = self.proj(x)
x = self.norm(x)
if scale_shift is not None:
scale, shift = scale_shift
x = x * (scale + 1) + shift
x = self.act(x)
return x
3. U-Net架构实现
完整的U-Net模型包含下采样和上采样路径,中间通过残差连接:
class Unet(nn.Module):
def __init__(self, dim=32, init_dim=None, dim_mults=(1,2,4,8)):
super().__init__()
dims = [init_dim or dim//2, *[dim * m for m in dim_mults]]
in_out = list(zip(dims[:-1], dims[1:]))
# 时间嵌入
time_dim = dim * 4
self.time_mlp = nn.Sequential(
SinusoidalPositionEmbeddings(dim),
nn.Linear(dim, time_dim),
nn.GELU(),
nn.Linear(time_dim, time_dim)
)
# 下采样路径
self.downs = nn.ModuleList([])
self.ups = nn.ModuleList([])
# 中间层
self.mid_block1 = Block(dim, dim)
self.mid_block2 = Block(dim, dim)
# 上采样路径
for ind, (dim_in, dim_out) in enumerate(in_out):
self.downs.append(nn.ModuleList([
Block(dim_in, dim_in),
Block(dim_in, dim_in),
nn.Conv2d(dim_in, dim_out, 3, 2, 1)
]))
for ind, (dim_in, dim_out) in enumerate(reversed(in_out)):
self.ups.append(nn.ModuleList([
Block(dim_out + dim_in, dim_out),
Block(dim_out + dim_in, dim_out),
nn.ConvTranspose2d(dim_out, dim_in, 4, 2, 1)
]))
self.final_conv = nn.Conv2d(dim, 3, 1)
def forward(self, x, time):
t = self.time_mlp(time)
h = []
for block1, block2, downsample in self.downs:
x = block1(x)
h.append(x)
x = block2(x, t)
h.append(x)
x = downsample(x)
x = self.mid_block1(x)
x = self.mid_block2(x)
for block1, block2, upsample in self.ups:
x = torch.cat((x, h.pop()), dim=1)
x = block1(x)
x = torch.cat((x, h.pop()), dim=1)
x = block2(x, t)
x = upsample(x)
return self.final_conv(x)
扩散过程实现
1. 前向扩散过程
实现从x₀直接计算任意时间步xₜ的函数:
def linear_beta_schedule(timesteps):
scale = 1000 / timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return torch.linspace(beta_start, beta_end, timesteps)
def forward_diffusion(x0, t, sqrt_alphas_cumprod, sqrt_one_minus_alphas_cumprod):
noise = torch.randn_like(x0)
sqrt_alpha = sqrt_alphas_cumprod[t]
sqrt_one_minus_alpha = sqrt_one_minus_alphas_cumprod[t]
# 根据重参数化技巧计算xₜ
x_t = sqrt_alpha * x0 + sqrt_one_minus_alpha * noise
return x_t, noise
2. 训练循环
实现扩散模型的训练过程:
def train(model, dataloader, optimizer, timesteps, device):
# 定义噪声调度
betas = linear_beta_schedule(timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod)
model.train()
for batch in dataloader:
optimizer.zero_grad()
batch = batch.to(device)
# 随机采样时间步
t = torch.randint(0, timesteps, (batch.size(0),), device=device).long()
# 前向扩散过程
x_noisy, noise = forward_diffusion(
batch, t, sqrt_alphas_cumprod, sqrt_one_minus_alphas_cumprod)
# 预测噪声
noise_pred = model(x_noisy, t)
# 计算损失
loss = F.mse_loss(noise_pred, noise)
loss.backward()
optimizer.step()
采样过程实现
训练完成后,我们可以使用模型从纯噪声生成新样本:
@torch.no_grad()
def sample(model, image_size, batch_size=16, channels=3, timesteps=1000):
# 准备噪声调度参数
betas = linear_beta_schedule(timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1,0), value=1.0)
sqrt_recip_alphas = torch.sqrt(1.0 / alphas)
sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod)
# 从纯噪声开始
img = torch.randn((batch_size, channels, image_size, image_size))
for t in reversed(range(0, timesteps)):
# 准备时间步
t_tensor = torch.full((batch_size,), t, dtype=torch.long)
# 预测噪声
pred_noise = model(img, t_tensor)
# 计算xₜ₋₁
alpha_t = alphas[t]
alpha_t_cumprod = alphas_cumprod[t]
alpha_t_cumprod_prev = alphas_cumprod_prev[t]
beta_t = betas[t]
# 根据预测噪声计算均值
model_mean = sqrt_recip_alphas[t] * (
img - beta_t / sqrt_one_minus_alphas_cumprod[t] * pred_noise
)
if t == 0:
img = model_mean
else:
posterior_variance = beta_t * (1. - alpha_t_cumprod_prev) / (1. - alpha_t_cumprod)
noise = torch.randn_like(img)
img = model_mean + torch.sqrt(posterior_variance) * noise
return img
总结与展望
本文详细解析了扩散模型的原理,并实现了完整的DDPM模型。扩散模型通过逐步去噪的生成方式,在许多生成任务中取得了state-of-the-art的结果。未来发展方向包括:
- 改进噪声调度策略
- 加速采样过程(减少所需时间步)
- 结合其他生成模型优势(如GANs)
- 扩展到更高分辨率生成任务
扩散模型为生成式AI开辟了新的可能性,理解其核心原理对于从事相关领域的研究和应用开发至关重要。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考