基于LSTM的垃圾短信分类器实现教程
前言
在当今数字化时代,短信分类技术对于过滤垃圾信息、保护用户隐私具有重要意义。本教程将详细介绍如何使用Python和TensorFlow构建一个基于LSTM的垃圾短信分类器,采用自然语言处理技术对短信进行分类。
环境准备
首先需要安装必要的Python库:
import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard
from sklearn.model_selection import train_test_split
from tensorflow.keras.layers import Embedding, LSTM, Dropout, Dense
from tensorflow.keras.models import Sequential
from tensorflow.keras.metrics import Recall, Precision
参数配置
在开始构建模型前,我们需要设置一些关键参数:
SEQUENCE_LENGTH = 100 # 每条短信的最大单词数
EMBEDDING_SIZE = 100 # 使用100维的GloVe词向量
TEST_SIZE = 0.25 # 测试集比例
BATCH_SIZE = 64 # 批处理大小
EPOCHS = 10 # 训练轮数
# 标签映射
label2int = {"ham": 0, "spam": 1}
int2label = {0: "ham", 1: "spam"}
数据加载与预处理
1. 加载数据集
我们使用经典的SMS垃圾短信数据集,包含正常短信(ham)和垃圾短信(spam):
def load_data():
texts, labels = [], []
with open("data/SMSSpamCollection") as f:
for line in f:
split = line.split()
labels.append(split[0].strip())
texts.append(' '.join(split[1:]).strip())
return texts, labels
2. 文本向量化
使用Tokenizer将文本转换为数字序列:
tokenizer = Tokenizer()
tokenizer.fit_on_texts(X)
# 保存tokenizer供后续使用
pickle.dump(tokenizer, open("results/tokenizer.pickle", "wb"))
X = tokenizer.texts_to_sequences(X)
3. 序列填充
为了保持输入长度一致,对序列进行填充:
X = pad_sequences(X, maxlen=SEQUENCE_LENGTH)
4. 标签编码
将文本标签转换为one-hot编码:
y = [label2int[label] for label in y]
y = to_categorical(y)
5. 数据集划分
将数据划分为训练集和测试集:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=TEST_SIZE, random_state=7)
词嵌入处理
使用预训练的GloVe词向量:
def get_embedding_vectors(tokenizer, dim=100):
embedding_index = {}
with open(f"data/glove.6B.{dim}d.txt", encoding='utf8') as f:
for line in tqdm.tqdm(f, "Reading GloVe"):
values = line.split()
word = values[0]
vectors = np.asarray(values[1:], dtype='float32')
embedding_index[word] = vectors
word_index = tokenizer.word_index
embedding_matrix = np.zeros((len(word_index)+1, dim))
for word, i in word_index.items():
embedding_vector = embedding_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
return embedding_matrix
模型构建
构建LSTM分类模型:
def get_model(tokenizer, lstm_units):
embedding_matrix = get_embedding_vectors(tokenizer)
model = Sequential()
model.add(Embedding(len(tokenizer.word_index)+1,
EMBEDDING_SIZE,
weights=[embedding_matrix],
trainable=False,
input_length=SEQUENCE_LENGTH))
model.add(LSTM(lstm_units, recurrent_dropout=0.2))
model.add(Dropout(0.3))
model.add(Dense(2, activation="softmax"))
model.compile(optimizer="rmsprop", loss="categorical_crossentropy",
metrics=["accuracy", Precision(), Recall()])
model.summary()
return model
模型训练
配置回调函数并开始训练:
model = get_model(tokenizer=tokenizer, lstm_units=128)
# 配置模型检查点和TensorBoard回调
model_checkpoint = ModelCheckpoint("results/spam_classifier_{val_loss:.2f}.h5",
save_best_only=True, verbose=1)
tensorboard = TensorBoard(f"logs/spam_classifier_{time.time()}")
# 开始训练
model.fit(X_train, y_train, validation_data=(X_test, y_test),
batch_size=BATCH_SIZE, epochs=EPOCHS,
callbacks=[tensorboard, model_checkpoint],
verbose=1)
模型评估
评估模型性能:
result = model.evaluate(X_test, y_test)
loss = result[0]
accuracy = result[1]
precision = result[2]
recall = result[3]
print(f"[+] Accuracy: {accuracy*100:.2f}%")
print(f"[+] Precision: {precision*100:.2f}%")
print(f"[+] Recall: {recall*100:.2f}%")
预测功能
实现预测函数对新短信进行分类:
def get_predictions(text):
sequence = tokenizer.texts_to_sequences([text])
sequence = pad_sequences(sequence, maxlen=SEQUENCE_LENGTH)
prediction = model.predict(sequence)[0]
return int2label[np.argmax(prediction)]
测试示例:
text = "You won a prize of 1,000$, click here to claim!"
print(get_predictions(text)) # 输出: spam
text = "Hi man, I was wondering if we can meet tomorrow"
print(get_predictions(text)) # 输出: ham
总结
本教程详细介绍了如何使用LSTM神经网络构建垃圾短信分类器。通过词嵌入技术将文本转换为向量表示,然后使用LSTM网络捕捉文本的时序特征,最终实现高效的分类。这种方法不仅适用于垃圾短信分类,稍加修改也可应用于其他文本分类任务。
关键点总结:
- 使用Tokenizer进行文本向量化
- 采用预训练的GloVe词向量
- 构建LSTM网络模型
- 使用准确率、精确率和召回率多指标评估
- 实现了便捷的预测接口
通过本教程,读者可以掌握基本的文本分类技术流程,为进一步研究更复杂的NLP任务打下基础。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考